2.隨機(jī)地從[-1,1]中任取兩個(gè)數(shù)x,y,則事件“y<sin$\frac{π}{2}$x”發(fā)生的概率為$\frac{1}{π}$.

分析 確定區(qū)域的面積,即可求出事件“y<sin$\frac{π}{2}$x”發(fā)生的概率.

解答 解:在區(qū)間[-1,1]上隨機(jī)地取兩個(gè)數(shù)x、y,構(gòu)成區(qū)域的面積為4;
事件“y<sin$\frac{π}{2}$x”發(fā)生,區(qū)域的面積為2${∫}_{0}^{1}$sin$\frac{π}{2}$xdx=2(-$\frac{2}{π}$)cos$\frac{π}{2}$x${|}_{0}^{1}$=$\frac{4}{π}$,
∴事件“y<sin$\frac{π}{2}$x”發(fā)生的概率為$\frac{1}{π}$.
故答案為$\frac{1}{π}$.

點(diǎn)評(píng) 本題考查概率的計(jì)算,考查學(xué)生的計(jì)算能力,確定區(qū)域的面積是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知函數(shù)f(x)=ex-2ax與g(x)=-x3+ax2-(2a+1)x的圖象不存在相互平行或重合的切線,則實(shí)數(shù)a的取值范圍[$-\sqrt{3}$,$\sqrt{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知正三棱錐P-ABC中E,F(xiàn)分別是AC,PC的中點(diǎn),若EF⊥BF,AB=2,則三棱錐P-ABC的外接球的表面積(  )
A.B.C.D.12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.對(duì)于不等式$\sqrt{{n}^{2}+1}$<n+1(n∈N*),某學(xué)生用數(shù)學(xué)歸納法證明如下:
(1)當(dāng)n=1時(shí),$\sqrt{{1}^{2}+1}$<1+1,不等式成立;
(2)假設(shè)當(dāng)n=k(k∈N*)時(shí)不等式成立,即$\sqrt{{k}^{2}+1}$<k+1,則當(dāng)n=k+1時(shí),$\sqrt{(k+1)^{2}+1}$=$\sqrt{{k}^{2}+2k+2}$$<\sqrt{{k}^{2}+2k+2+2k+2}$=$\sqrt{(k+2)^{2}}$=(k+1)+1;所以當(dāng)n=k+1時(shí),不等式$\sqrt{{n}^{2}+1}$<n+1成立.
上述證明中( 。
A.n=1驗(yàn)證不正確B.歸納假設(shè)不正確
C.從n=k到n=k+1的推理不正確D.證明過(guò)程完全正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.甲、乙兩人進(jìn)行乒乓球比賽,約定每局勝者得1分,負(fù)者得0分,比賽進(jìn)行到有一人比對(duì)方多2分或打滿8局時(shí)停止.設(shè)甲在每局中獲勝的概率為p(p>$\frac{1}{2}$),且各局勝負(fù)相互獨(dú)立.已知第二局比賽結(jié)束時(shí)比賽停止的概率為$\frac{5}{8}$.
(Ⅰ)求p的值;
(Ⅱ)設(shè)ξ表示比賽停止時(shí)比賽的局?jǐn)?shù),求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某單位進(jìn)行了主題為“你幸福嗎”的幸福指數(shù)問(wèn)卷調(diào)查,得到每個(gè)調(diào)查對(duì)象的幸福指數(shù)評(píng)分值(百分制).現(xiàn)從收到的調(diào)查表中隨機(jī)抽取20份進(jìn)行統(tǒng)計(jì),得到如圖所示的頻率分布表和頻率分布直方圖.
(Ⅰ)請(qǐng)完成題目中的頻率分布表,并補(bǔ)全題目中的頻率分布直方圖;
(Ⅱ)該單位將隨機(jī)邀請(qǐng)被問(wèn)卷調(diào)查的部分員工參加“幸福教育”的座談會(huì).在抽樣統(tǒng)計(jì)的這20人中,已知幸福指數(shù)評(píng)分值在區(qū)間(80,100]的5人中有2人被邀請(qǐng)參加座談,求其中幸福指數(shù)評(píng)分值在區(qū)間(80,90]的僅有1人被邀請(qǐng)的概率.
幸福指數(shù)評(píng)分值頻數(shù)頻率
[50,60]
(60,70]
(70,80]
(80,90]3
(90,100]
合  計(jì)201

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.某工廠加工某種零件的三道供需流程圖如圖所示,則該種零件可導(dǎo)致廢品的環(huán)節(jié)有(  )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.在極坐標(biāo)系Ox中,曲線C1的方程為ρ=2sinθ,C2的方程為ρ=8sinθ,射線θ=$\frac{π}{3}$與C1的異于極點(diǎn)的交點(diǎn)為A,與C2的異于極點(diǎn)的交點(diǎn)為B,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)拋物線y2=2px(p>0)的焦點(diǎn)為F,過(guò)F且斜率為$\sqrt{3}$的直線交拋物線于A,B兩點(diǎn),若線段AB的垂直平分線與 x軸交于點(diǎn)M(11,0),則p=( 。
A.2B.3C.6D.12

查看答案和解析>>

同步練習(xí)冊(cè)答案