精英家教網 > 高中數學 > 題目詳情
14.為豐富少兒文體活動,某學校從籃球,足球,排球,橄欖球中任選2種球給甲班學生使用,剩余的2種球給乙班學生使用,則籃球和足球不在同一班的概率是( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{5}{6}$

分析 先求出基本事件總數n=${C}_{4}^{2}$=6,由此求出籃球和足球在同一班的概率,再利用對立事件概率計算公式能求出籃球和足球不在同一班的概率.

解答 解:為豐富少兒文體活動,某學校從籃球,足球,排球,橄欖球中任選2種球給甲班學生使用,
剩余的2種球給乙班學生使用,
基本事件總數n=${C}_{4}^{2}$=6,
籃球和足球在同一班的概率p1=$\frac{{A}_{2}^{2}}{{C}_{4}^{2}}$=$\frac{1}{3}$,
∴籃球和足球不在同一班的概率是:
p=1-p1=1-$\frac{1}{3}$=$\frac{2}{3}$.
故選:C.

點評 本題考查概率的求法,是基礎題,解題時要認真審題,注意對立事件概率計算公式的合理運用.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

4.已知函數f(x)=x3-3x2的圖象如圖所示,求圖中陰影部分的面積$\frac{27}{4}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{64}{3}$B.32C.64D.$\frac{32}{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.圓錐曲線C的極坐標方程為:ρ2(1+sin2θ)=2.
(1)以極點為原點,極軸為x軸非負半軸建立平面直角坐標系,求曲線C的直角坐標方程,并求曲線C在直角坐標系下的焦點坐標以及在極坐標系下的焦點坐標;
(2)直線l的極坐標方程為θ=$\frac{π}{3}$(ρ∈R),若曲線C上的點M到直線l的距離最大,求點M的坐標(直角坐標和極坐標均可).

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.將函數y=$\sqrt{3}$cosx+sinx(x∈R)的圖象向左平移m(m>0)個單位長度后,所得到的圖象關于y軸對稱,則m的最小值是( 。
A.$\frac{π}{3}$B.$\frac{π}{12}$C.$\frac{π}{6}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AD∥BC,且AB=AD=AC=3,PA=BC=4,M為線段AD上一點,AM=2MD,且N為PC的中點.
(Ⅰ)證明:MN∥平面PAB;
(Ⅱ)求證:平面PMC⊥平面PAD;
(Ⅲ)求直線AN與平面PMC所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.如圖,直三棱柱ABC-A1B1C1中,AC=4,BC=3,AA1=4,AC⊥BC,點D在線段AB上.
(Ⅰ)證明AC⊥B1C;
(Ⅱ)若D是AB中點,證明AC1∥平面B1CD;
(Ⅲ)當$\frac{BD}{AB}$=$\frac{1}{3}$時,求二面角B-CD-B1的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.某校高二年級學生會有理科生4名,其中3名男同學;文科生3名,其中有1名男同學,從這7名成員中隨機抽4人參加高中示范校驗收活動問卷調查.
(Ⅰ)設A為事件“選出的4人中既有文科生又有理科生”,求事件A的概率;
(Ⅱ)設X為選出的4人中男生人數與女生人數差的絕對值,求隨機變量X的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

7.已知p:?x∈[1,2],x2-a≥0,q:方程x2+2ax+2-a=0有實數解,若p且q為真命題,則實數a的取值范圍是( 。
A.a≤-2或a=1B.a≤2或1≤a≤2C.a≥1D.-2≤a≤1

查看答案和解析>>

同步練習冊答案