17.已知集合A=(-1,2],集合B={x|x2-2ax+a2-1≤0}.若B∩∁RA=B,則實(shí)數(shù)a的取值范圍(-∞,-2]∪(3,+∞).

分析 根據(jù)集合A求出∁RA,化簡集合B,由B∩∁RA=B列出不等式求出實(shí)數(shù)a的取值范圍.

解答 解:集合A=(-1,2],
∴∁RA=(-∞,-1]∪(2,+∞),
集合B={x|x2-2ax+a2-1≤0}={x|a-1≤x≤a+1},
且B∩∁RA=B,
∴B⊆∁RA,
∴a+1≤-1或a-1>2,
解得a≤-2或a>3,
∴實(shí)數(shù)a的取值范圍是(-∞,-2]∪(3,+∞).
故答案為:(-∞,-2]∪(3,+∞).

點(diǎn)評(píng) 本題考查了集合的化簡與運(yùn)算問題,也考查了轉(zhuǎn)化思想與解不等式的問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若△ABC是邊長為a的正三角形,則$\overrightarrow{AB}$•$\overrightarrow{BC}$=( 。
A.$\frac{1}{2}$a2B.-$\frac{1}{2}$a2C.a2D.-a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若不等式x2+2ax+1≥0對(duì)于一切x∈(0,$\frac{1}{2}}$]成立,則a的最小值是-$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.復(fù)數(shù)z=1+i,且$\frac{1-ai}{z}$(a∈R)是純虛數(shù),則實(shí)數(shù)a的值為( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=$\sqrt{3}$sinxcosx+$\frac{1}{2}$cos2x(x∈R),則f(x)的單調(diào)遞增區(qū)間是( 。
A.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}}$](k∈Z)B.[kπ-$\frac{5π}{12}$,kπ+$\frac{π}{12}}$](k∈Z)
C.[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}}$](k∈Z)D.[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}}$](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.執(zhí)行如圖所示的程序框圖,那么輸出的n的值為( 。
A.9B.10C.11D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,長方體ABCD-A1B1C1D1中,AB=2,BC=$\sqrt{2}$,CC1=1,M為線段AB的中點(diǎn).
(1)求異面直線DD1 與MC1所成的角;
(2)求直線MC1與平面BB1C1C所成的角;
(3)求三棱錐C-MC1D1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=2sinωxcosωx-2$\sqrt{3}$cos2ωx+$\sqrt{3}$(ω>0),且y=f(x)的圖象的兩相鄰對(duì)稱軸間的距離為$\frac{π}{2}$.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,角C為銳角,且f(C)=$\sqrt{3}$,c=3$\sqrt{2}$,sinB=2sinA,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在整數(shù)集中,不等式$\frac{2x+3}{2-x}$≥1的解集為{1}.

查看答案和解析>>

同步練習(xí)冊(cè)答案