已知直線的極坐標(biāo)方程為ρsin(θ+
π
4
)
=1,則點(diǎn)A(2,
π
4
)到這條直線的距離為
 
考點(diǎn):簡(jiǎn)單曲線的極坐標(biāo)方程
專(zhuān)題:坐標(biāo)系和參數(shù)方程
分析:把極坐標(biāo)方程化為直角坐標(biāo),再利用點(diǎn)到直線的距離公式即可得出.
解答: 解:直線的極坐標(biāo)方程為ρsin(θ+
π
4
)
=1,化為
2
2
(ρsinθ+ρcosθ)=1
,即x+y-
2
=0.
點(diǎn)A(2,
π
4
)化為A(
2
,
2
)

∴點(diǎn)A(2,
π
4
)到這條直線的距離d=
|
2
+
2
-
2
|
2
=1.
故答案為:1.
點(diǎn)評(píng):本題考查了極坐標(biāo)方程化為直角坐標(biāo)、點(diǎn)到直線的距離公式,考查了計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的函數(shù)f(x)滿足f(0)=0,f(x)+f(1-x)=1,f(
x
3
)=
1
2
f(x),且當(dāng)0≤x1<x2≤1時(shí).f(x1)≤f(x2),求f(
1
2013
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(1,2sinθ),
b
=(sin(θ+
π
3
),1),θ∈R.
(1)若
a
b
,求tanθ的值;
(2)若
a
b
,且θ∈(0,
π
2
),求θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線ax+y-2=0與圓心為C的圓(x-1)2+(y-a)2=4相交于A,B兩點(diǎn),且△ABC為等邊三角形,則實(shí)數(shù)a=( 。
A、±
3
3
B、±
1
3
C、1或7
D、4±
15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)任意實(shí)數(shù)x定義:2x為x的冪數(shù),已知a,b,c∈R,若a,b的冪數(shù)之和與a,b之和的冪數(shù)相等,且a,b,c的冪數(shù)之和與a,b,c之和的冪數(shù)也相等,則c的最大值為(  )
A、2-log23
B、log32
C、1
D、log23

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,二次函數(shù)f(x)=
1
2
an•x2+(2-n-an+1)•x的對(duì)稱(chēng)軸為x=
1
2

(1)試證明{2nan}是等差數(shù)列,并求{an}通項(xiàng)公式;
(2)設(shè){an}的前n項(xiàng)和為Sn,試求使得Sn<3成立的n值,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)據(jù)x1,x2,…,x10的均值為
.
x
,標(biāo)準(zhǔn)差為σ,則數(shù)據(jù)2x1+1,2x2+1,…,2x10+1的均值和標(biāo)準(zhǔn)差分別為( 。
A、
.
x
和2σ
B、2
.
x
+1和2σ+1
C、2
.
x
+1和2σ
D、2
.
x
+1和4σ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若實(shí)數(shù)x,y滿足
x+y≥1
x-y+1≥0
6x-y-14≤0
,則(
1
9
)x
(
1
3
)y
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三角形ABC中,a=1,b=
3
,c=1,已知三條邊長(zhǎng),求三角形ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案