1.已知$|{\overrightarrow a}|=|{\overrightarrow b}|=|{\overrightarrow c}$|=1,且$\overrightarrow a+\overrightarrow b+\sqrt{3}$$\overrightarrow c=0$,則$\overrightarrow a\overrightarrow b+\overrightarrow b\overrightarrow c+\overrightarrow c\overrightarrow a$=$\frac{1}{2}$-$\sqrt{3}$.

分析 由條件求得$\overrightarrow{a}•\overrightarrow$=$\frac{1}{2}$ 且 $\overrightarrow{a}+\overrightarrow$=-$\sqrt{3}$$\overrightarrow{c}$,代入要求的式子化簡可得結(jié)果.

解答 解:已知$|{\overrightarrow a}|=|{\overrightarrow b}|=|{\overrightarrow c}$|=1,且$\overrightarrow a+\overrightarrow b+\sqrt{3}$$\overrightarrow c=0$,∴${\overrightarrow{a}}^{2}$+${\overrightarrow}^{2}$+2$\overrightarrow{a}•\overrightarrow$=3${\overrightarrow{c}}^{2}$,即 2+2$\overrightarrow{a}•\overrightarrow$=3,∴$\overrightarrow{a}•\overrightarrow$=$\frac{1}{2}$.
又 $\overrightarrow{a}+\overrightarrow$=-$\sqrt{3}$$\overrightarrow{c}$,∴$\overrightarrow a\overrightarrow b+\overrightarrow b\overrightarrow c+\overrightarrow c\overrightarrow a$=$\overrightarrow{a}•\overrightarrow$+$\overrightarrow{c}$•($\overrightarrow{a}$+$\overrightarrow$)=$\overrightarrow{a}•\overrightarrow$+$\overrightarrow{c}$•(-$\sqrt{3}$$\overrightarrow{c}$)=$\frac{1}{2}$-$\sqrt{3}$,
故答案為:$\frac{1}{2}$-$\sqrt{3}$.

點評 本題主要考查兩個向量的數(shù)量積的運算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在△ABC中,若a=3$\sqrt{3}$,c=5,B=30°,則b=$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=e2(lnx+a-1)(e=2.71828…為自然對數(shù)的底數(shù)在定義域上單調(diào)遞增.
(1)求實數(shù)a的取值范圍;
(2)當(dāng)實數(shù)a取最小值時,設(shè)$g(x)={e^{-x}}[f(x)-1]+\frac{2}{ex}$,證明:
①$g(x)≥min\{y|y=g(x),x∈[\frac{1}{2},\frac{4}{7}]\}$;
②$g(x)+1>\frac{3}{56}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.吃零食是中學(xué)生中普遍存在的現(xiàn)象,吃零食對學(xué)生身體發(fā)育有諸多不得影響,影響學(xué)生的健康成長,表格是性別與吃零食的列聯(lián)表
總計
喜歡吃零食51217
不喜歡吃零食402868
總計454085
試畫出列聯(lián)表的二維條形圖并計算你有多大把握判斷性別與吃零食是否有關(guān)?
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
   k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知α、β都是銳角,且$cos(α+β)=-\frac{3}{5}$,$sinβ=\frac{12}{13}$,則cosα=$\frac{33}{65}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)f(x)=x3-6x+5,x∈R.
(1)求函數(shù)f(x)在x=1處的切線方程;
(2)求f(x)在區(qū)間[-2,2]的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知復(fù)數(shù)z=2+i,則z4-4z3+6z2-4z-1=-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若直線l1:ax+2y+a+3=0與l2::x+(a+1)y+4=0平行,則實數(shù)a的值為(  )
A.1B.-2C.1或-2D.-1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,若x1,x2∈(-$\frac{π}{6}$,$\frac{π}{3}$),且f(x1)=f(x2),則f(x1+x2)=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

同步練習(xí)冊答案