4.設函數(shù)f:N+→N+滿足:對于任意大于3的正整數(shù)n,f(n)=n-3,且當n≤3時,2≤f(n)≤3,則不同的函數(shù)f(x)的個數(shù)為( 。
A.3B.6C.8D.9

分析 通過f(n)=n-3,結合映射的定義,根據(jù)2≤f(n)≤3,確定函數(shù)的個數(shù).

解答 解:∵n≤3,k=3,2≤f(n)≤3,
∴f(1)=2或3,且 f(2)=2或3 且 f(3)=2或3.
根據(jù)分步計數(shù)原理,可得共2×2×2=8個不同的函數(shù).
故選:C.

點評 本題主要考查映射的定義,以及分步計數(shù)原理的應用,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.解關于x的不等式(a2-4)x2+4x-1>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知集合U={0,1,2,3,4},M={0,4},N={2,4},則∁U(M∪N)={1,3}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.下面?zhèn)未a表示的算法中,最后一次輸出的I的值是( 。
For I=2to 13Step 3
Print I
Next I
Print“I=”,I.
A.5B.8C.11D.14

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知命題p:若 x>y,則-x<-y;
命題q:若A>B,則sinA>sinB.
在命題①p∨q ②p∧q;③p∧(¬q);④(¬p)∨q中,真命題是(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知函數(shù)f(x)=x2,g(x)=x+2,則f(g(3))=( 。
A.25B.11C.45D.27

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知x,y滿足$\left\{\begin{array}{l}{y≥x}\\{x+y≤2}\\{x≥a}\end{array}\right.$且z=2x+y的最大值是最小值的4倍,則a的值是$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知P是△ABC所在平面內一點,D為AB的中點,若2$\overrightarrow{PD}$+$\overrightarrow{PC}$=(λ+1)$\overrightarrow{PA}$+$\overrightarrow{PB}$,且△PBA與△PBC的面積相等,則實數(shù)λ的值為-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.如果直線x+2ay-1=0與直線(3a-1)x-ay-1=0垂直,則a=1或$\frac{1}{2}$.

查看答案和解析>>

同步練習冊答案