11.橢圓的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{9}$=1,它的兩個(gè)焦點(diǎn)分別為F1、F2,若|F1F2|=8,弦AB過F1則△ABF2的周長為(  )
A.10B.20C.2$\sqrt{41}$D.4$\sqrt{41}$

分析 由|F1F2|=8=2c,b=3,a2=b2+c2,解得a,再利用橢圓的定義即可得出.

解答 解:∵|F1F2|=8=2c,解得c=4,
又b=3,∴a2=32+42=25,解得a=5.
∴弦AB過F1則△ABF2的周長=|AB|+|AF2|+|BF2|=|AF1|+|AF2|+|BF1|+|BF2|=4a=20.
故選:B.

點(diǎn)評 本題考查了橢圓的定義標(biāo)準(zhǔn)方程及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某校有1400名考生參加市模擬考試,現(xiàn)采用分層抽樣的方法從文、理考生中分別抽取20份和50份數(shù)學(xué)試卷,進(jìn)行成績分析.得到下面的成績頻率分布表:
分?jǐn)?shù)分值[0,30)[30,60)[60,90)[90,120)[120,150)
文科頻數(shù)24833
理科頻數(shù)3712208
(1)估計(jì)文科數(shù)學(xué)平均分及理科考生的及格人數(shù)(90分為及格分?jǐn)?shù)線);
(2)在試卷分析中,發(fā)現(xiàn)概念性失分非常嚴(yán)重,統(tǒng)計(jì)結(jié)果如下:
文科理科
概念1530
其它520
問是否有90%的把握認(rèn)為概念失分與文、理考生的不同有關(guān)?(本題可以參考獨(dú)立性檢驗(yàn)臨界值表)
附參考公式與數(shù)據(jù):${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P(K2≥k)0.50.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.計(jì)算:16${\;}^{\frac{1}{lo{g}_{6}4}}$+49${\;}^{\frac{1}{lo{g}_{8}7}}$=100.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),點(diǎn)(0,b)到右焦點(diǎn)F的距離與它到直線l:x=4的距離比恰為離心率$\frac{1}{2}$,
(1)求橢圓C的方程;
(2)設(shè)P(1,$\frac{3}{2}$),AB是經(jīng)過右焦點(diǎn)F的任一弦(不經(jīng)過點(diǎn)P),設(shè)直線AB與l相交于點(diǎn)M,記PA,PB,PM的斜率分別為k1,k2,k3,問:是否存在常數(shù)λ,使得k1+k2=λk3?若存在,求出λ的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.江門對市民進(jìn)行經(jīng)濟(jì)普查,在某小區(qū)共400戶居民中,已購買電腦的家庭有358戶,已購買私家車的有42戶,兩者都有的有34戶,則該小區(qū)兩者都沒購買的家庭有( 。⿷簦
A.0戶B.34戶C.42戶D.358戶

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)A={(m,n)|0<m<2,0<n<2},則任。╩,n)∈A,關(guān)于x的方程$\frac{m}{4}$x2+x+n=0有實(shí)根的概率為( 。
A.$\frac{1+2ln2}{4}$B.$\frac{1+ln2}{2}$C.$\frac{3-2ln2}{4}$D.$\frac{1-ln2}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,橢圓的中心在原點(diǎn),其左焦點(diǎn)F1與拋物線y2=-4x的焦點(diǎn)重合,過點(diǎn)F1的直線l與橢圓交于A,B兩點(diǎn),與拋物線交于C,D兩點(diǎn),當(dāng)直線l與x軸垂直時(shí),$\frac{|CD|}{|AB|}$=2$\sqrt{2}$.
(1)求橢圓的方程;
(2)設(shè)F2是橢圓的右焦點(diǎn),求$\overrightarrow{{F_2}A}$•$\overrightarrow{{F_2}B}$的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)x∈R,定義符號函數(shù)sgnx=$\left\{\begin{array}{l}{1,x>0}\\{0,x=0}\\{-1,x<0}\end{array}\right.$,則函數(shù)f(x)=|x|sgnx的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.等差數(shù)列{an}中,Sn為其前n項(xiàng)和,已知a2=2,S5=15,數(shù)列{bn},b1=1,對任意n∈N+滿足bn+1=2bn+1.
(Ⅰ)數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=$\frac{a_n}{{{b_n}+1}}$,設(shè)數(shù)列{cn}的前n項(xiàng)和Tn,證明:Tn<2.

查看答案和解析>>

同步練習(xí)冊答案