考點(diǎn):分段函數(shù)的應(yīng)用,等比數(shù)列的性質(zhì)
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用,等差數(shù)列與等比數(shù)列
分析:由題意可得f(x)+f(
)=0;故f(a
2)+…+f(a
6)=f(a
2)+f(a
6)+f(a
3)+f(a
5)+f(a
4)=0,從而化f(a
1)+f(a
2)+…+f(a
6)=f(a
1)=2a
1,從而解得.
解答:
解:若x>1,則0<
<1;
則f(x)=xlnx,f(
)=
=-xlnx;
故f(x)+f(
)=0;
又∵{a
n}是公比大于0的等比數(shù)列,且a
3a
4a
5=1,
∴a
4=1;
故a
6a
2=a
3a
5=a
4=1;
故f(a
2)+…+f(a
6)=f(a
2)+f(a
6)+f(a
3)+f(a
5)+f(a
4)=0+0+0=0;
故f(a
1)+f(a
2)+…+f(a
6)=f(a
1)=2a
1,
若a
1>1,則a
1lna
1=2a
1,則a
1=e
2;
若0<a
1<1,則
<0,故無(wú)解;
故答案為:e
2.
點(diǎn)評(píng):本題考查了等比數(shù)列的定義及分段函數(shù)的應(yīng)用,屬于中檔題.