15.如圖,平行四邊形ABCD⊥平面CDE,AD=DC=DE=4,∠ADC=60°,AD⊥DE
(Ⅰ)求證:DE⊥平面ABCD;
(Ⅱ)求二面角C-AE-D的余弦值的大。

分析 (Ⅰ)過A作AH⊥DC交DC于H.證明AH⊥DE,AD⊥DE,然后證明DE⊥平面ABCD;
(Ⅱ)過C作CM⊥AD交AD于M,過C作CN⊥AE交AE于N,連接MN.說明∠CNM就是所求二面角的一個(gè)平面角.然后求解即可.

解答 (本題滿分15分)
證明:(Ⅰ)過A作AH⊥DC交DC于H.
∵平行四邊形ABCD⊥平面CDE
∴AH⊥平面CDE
又∵DE?平面CDE
∴AH⊥DE…①由已知AD⊥DE…②,AH∩AD=A…③
由①②③得,DE⊥平面ABCD;   …(7分)
解:(Ⅱ)過C作CM⊥AD交AD于M,過C作CN⊥AE交AE于N,
連接MN.
由(Ⅰ)得DE⊥平面ABCD,
又∵DE?平面ADE,
∴平面ADE⊥平面ABCD.
∴CM⊥AE,
又∵CN垂直AE,且CM∩CN=C.

∴AE⊥平面CMN,得角CNM就是所求二面角的一個(gè)平面角.
又∵$CM=2\sqrt{3}$,$MN=\sqrt{2}$,
∴所求二面角的余弦值為$\frac{{\sqrt{7}}}{7}$.…(8分)

點(diǎn)評 本題考查二面角的平面角的求法,直線與平面垂直的判定定理的應(yīng)用,考查空間想象能力以及計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(2,-3),若向量$\overrightarrow{c}$滿足$\overrightarrow{c}$⊥$\overrightarrow{a}$,$\overrightarrow$∥($\overrightarrow{a}$-$\overrightarrow{c}$),則$\overrightarrow{c}$=( 。
A.(-$\frac{7}{4}$,$\frac{7}{8}$)B.($\frac{7}{2}$,-$\frac{7}{4}$)C.(-$\frac{7}{2}$,-$\frac{7}{4}$)D.(-$\frac{7}{2}$,$\frac{7}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=kx,g(x)=$\frac{lnx}{x}$,若?xi∈[$\frac{1}{e}$,e],(i=1,2)使得f(xi)=g(xi),(i=1,2),則實(shí)數(shù)k的取值范圍是(  )
A.[$\frac{1}{{e}^{2}}$,$\frac{1}{2e}$)B.[$\frac{1}{2e}$,$\frac{1}{e}$]C.(0,$\frac{1}{{e}^{2}}$)D.($\frac{1}{e}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知橢圓$\frac{x^2}{9}+\frac{y^2}{5}=1$的右焦點(diǎn)為F,P是橢圓上一點(diǎn),點(diǎn)$A({0,2\sqrt{3}})$,當(dāng)△APF的周長最大時(shí),△APF的面積等于( 。
A.$\frac{{11\sqrt{3}}}{4}$B.$\frac{{21\sqrt{3}}}{4}$C.$\frac{11}{4}$D.$\frac{21}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)點(diǎn)O在△ABC的內(nèi)部,點(diǎn)D,E分別為邊AC,BC的中點(diǎn),且$|{\overrightarrow{OD}+2\overrightarrow{DE}}|=1$,則$|{\overrightarrow{OA}+2\overrightarrow{OB}+3\overrightarrow{OC}}|$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,一貨輪航行到M處,測得燈塔S在貨輪的北偏東15°,與燈塔S相距20n mile,隨后貨輪按北偏西30°的方向航行30min后,又測得燈塔在貨輪的東北方向,則貨輪的速度為( 。
A.20($\sqrt{2}$+$\sqrt{6}$)n mile/hB.20($\sqrt{6}$-$\sqrt{2}$)n mile/hC.20($\sqrt{3}$+$\sqrt{6}$)n mile/hD.20($\sqrt{6}$-$\sqrt{3}$)n mile/h

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知對數(shù)函數(shù)f(x)=logax,若f-1(2)=$\frac{1}{4}$,則a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知圓C的圓心位于第二象限且在直線y=2x+1上,若圓C與兩個(gè)坐標(biāo)軸都相切,則圓C的標(biāo)準(zhǔn)方程為${(x+\frac{1}{3})^2}+{(y-\frac{1}{3})^2}=\frac{1}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.?dāng)?shù)列{bn}滿足bn+2-2bn+1+bn=0(n∈N*),若b3=11,{bn}的前9項(xiàng)和為153,則數(shù)列{bn}的通項(xiàng)公式為bn=3n+2.

查看答案和解析>>

同步練習(xí)冊答案