分析 (1)由正弦定理,三角函數(shù)恒等變換的應(yīng)用化簡(jiǎn)已知可得$2sin(A-\frac{π}{6})=1,即sin(A-\frac{π}{6})=\frac{1}{2}$,結(jié)合A的范圍,即可得解A的值.
(2)由余弦定理可求bc=14,利用三角形面積公式即可計(jì)算得解.
解答 (本題滿分為12分)
解:(1)因?yàn)椋?a(cosB+\sqrt{3}sinB)=b+c$,
由正弦定理得:$sinAcosB+\sqrt{3}sinAsinB=sinB+sinC$,
所以:$sinAcosB+\sqrt{3}sinAsinB=sinB+sin(A+B)$,
可得:$sinAcosB+\sqrt{3}sinAsinB=sinB+sinAcosB+cosAsinB$,
可得:$\sqrt{3}sinA-cosA=1$,$2sin(A-\frac{π}{6})=1,即sin(A-\frac{π}{6})=\frac{1}{2}$.
所以:$A-\frac{π}{6}=\frac{π}{6}$,可得$A=\frac{π}{3}$.(6分)
(2)由余弦定理得:a2=b2+c2-2bccosA,即:7=b2+c2-bc,
所以:(b+c)2-3bc=7,
所以:bc=14,
所以:${S_{△ABC}}=\frac{1}{2}bcsinA=\frac{1}{2}×14×\frac{{\sqrt{3}}}{2}=\frac{{7\sqrt{3}}}{2}$.(12分)
點(diǎn)評(píng) 本題主要考查了正弦定理,三角函數(shù)恒等變換的應(yīng)用,余弦定理,三角形面積公式在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2017屆湖北省百所重點(diǎn)校高三聯(lián)合考試數(shù)學(xué)(理)試卷(解析版) 題型:解答題
設(shè):實(shí)數(shù)滿足不等式, :函數(shù)無(wú)極值點(diǎn).
(1)若“”為假命題,“”為真命題,求實(shí)數(shù)的取值范圍;
(2)已知“”為真命題,并記為,且: ,若是的必要不充分條件,求正整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2017屆河北滄州市高三9月聯(lián)考數(shù)學(xué)(文)試卷(解析版) 題型:選擇題
已知全集,集合,,則( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2x+y-z=0 | B. | x+y-2z=0 | C. | x+y-z+3=0 | D. | 2x-y-z-2=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 10 | B. | $2\sqrt{5}$ | C. | $2\sqrt{10}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 2 | C. | $\frac{3}{2}$ | D. | $\frac{7}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com