精英家教網 > 高中數學 > 題目詳情
設函數f(x)=lnx,有以下4個命題:
①對任意的x1、x2∈(0,+∞),有f(
x1+x2
2
)≤
f(x1)+f(x2)
2
;
②對任意的x1、x2∈(1,+∞),且x1<x2,有f(x2)-f(x1)<x2-x1
③對任意的x1、x2∈(e,+∞),且x1<x2,有x1f(x2)<x2f(x1);
④對任意的0<x1<x2,總有x0∈(x1,x2),使得f(x0)≤
f(x1)-f(x2)
x1-x2

其中正確的是
 
(填寫序號).
考點:命題的真假判斷與應用
專題:函數的性質及應用,簡易邏輯
分析:直接由對數函數的運算性質結合基本不等式判斷①;
構造函數g(x)=x-lnx(x>1),利用導數求得其單調性后判斷②;
構造函數函數t(x)=
lnx
x
(x>e),利用導數求得其單調性后判斷③;
取兩個特殊的x1,x2,求出
f(x1)-f(x2)
x1-x2
的范圍后判斷④.
解答: 解:f(x)=lnx是(0,+∞)上的增函數,
對于①,由f(
x1+x2
2
)=ln(
x1+x2
2
)
,
f(x1)+f(x2)
2
=
1
2
(lnx1+lnx2)=ln
x1x2
,
x1+x2
2
x1x2
,∴f(
x1+x2
2
)≥
f(x1)+f(x2)
2
,命題①錯誤;
對于②,設函數g(x)=x-lnx(x>1),g(x)=1-
1
x
>0
,
∴g(x)=x-lnx在(1,+∞)上為增函數,
∵x1<x2,則有x2-lnx2>x1-lnx1,即f(x2)-f(x1)<x2-x1,命題②正確;
對于③,令函數t(x)=
lnx
x
(x>e),t(x)=
1-lnx
x2
<0,
∴t(x)為(e,+∞)上的減函數,
由x2>x1>e,得
lnx1
x1
lnx2
x2
,即x1f(x2)<x2f(x1),命題③正確;
對于④,令e=x1<x2=e2,得
f(x1)-f(x2)
x1-x2
=
lne-lne2
e-e2
=
1
e2-e
<1,
∵x0∈(x1,x2),∴f(x0)>f(x1)=1,不滿足f(x0)≤
f(x1)-f(x2)
x1-x2
,命題④錯誤.
故答案為②③.
點評:本題考查對數函數的單調性,訓練了利用導數研究函數的單調性方法,構造函數是解答該題的關鍵,是中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在空間直角坐標系中,若一條直線與三條坐標面所成的角都相等,則這個角的余弦值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知有公共焦點的橢圓與雙曲線的中心都為原點,焦點在x軸上,左右焦點分別F1F2,且它們在第一象限的交點P,△PF1F2是PF1為底邊的等腰三角形,|PF1|=12,橢圓的離心率的取值范圍為(
2
5
,
4
9
),則雙曲線離心率的取值范圍是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

數列{
n
2n
}
的前n項的和為( 。
A、1-
n+2
2n+1
B、
1
2n
C、2-
n+2
2n
D、2-
n+4
2n

查看答案和解析>>

科目:高中數學 來源: 題型:

已知圓心在第一象限的圓C與y軸相切,并且與直線4x-3y-36=0相切與A(9,0).
(1)求圓C的方程;
(2)設B為圓C上的一個動點,求弦AB中點M的軌跡方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

如果-
1
4
a>-
1
3
b,則
1
4
a<
1
3
b.
 
(判斷對錯).

查看答案和解析>>

科目:高中數學 來源: 題型:

某商店儲存的50個燈泡中,甲廠生產的燈泡占60%,乙廠生產的燈泡占40%,甲廠生產的燈泡的一等品率是90%,乙廠生產的燈泡的一等品率是80%.
(1)若從這50個燈泡中隨機抽取出一個燈泡(每個燈泡被取出的機會均等),則它是甲廠生產的一等品的概率是多少?
(2)從這50個燈泡中隨機抽取出的一個燈泡是一等品,求它是甲廠生產的概率是多少?
(3)若從這50個燈泡中隨機抽取出兩個燈泡(每個燈泡被取出的機會均等),這兩個燈泡中是甲廠生產的一等品的個數記為ξ,求Eξ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

在距A城50km的B地發(fā)現稀有金屬礦藏,現知由A至某方向有一條直鐵路AX,B到該鐵路的距離為30km,為在AB之間運送物資,擬在鐵路AX上的某點C處筑一直公路通到B地.已知單位重量貨物的鐵路運費與運輸距離成正比,比例系數為k1(k1為常數且k1>0);單位重量貨物的公路運費與運輸距離的平方成正比,比例系數為k2(k2為常數且k2>0).設單位重量貨物的總運費為y元,AC之間的距離為xkm.
(1)將y表示成x的函數;
(2)若k1=20k2,則當x為何值時,單位重量貨物的總運費最少.并求出最少運費.

查看答案和解析>>

科目:高中數學 來源: 題型:

若f(x)=sin(2x-
π
6
)-1,|f(x)-m|<1在x∈[-
π
4
,
π
6
]恒成立,求實數m的取值范圍.

查看答案和解析>>

同步練習冊答案