7.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線畫出的是某多面體的三視圖,則該多面體的表面積為( 。
A.60B.72C.81D.114

分析 由已知中的三視圖可得該幾何體是一個以主視圖為底面的四棱柱,代入柱體表面積公式,可得答案.

解答 解:由已知中的三視圖可得該幾何體是一個以主視圖為底面的四棱柱,
底面面積為:12,底面周長為:16,
棱柱的高為3,
故柱體的表面積S=2×12+16×3=72,
故選:B.

點評 本題考查的知識點是棱柱的體積和表面積,根據(jù)已知判斷出幾何體的形狀,是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在△ABC中,角A,B,C的對邊分別為a,b,c,若a=2,A=45°,C=75°,則b等于( 。
A.$\frac{{\sqrt{6}-\sqrt{2}}}{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{6}}}{2}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)m,n∈R,定義在區(qū)間[m,n]上函數(shù)f(x)=x2的值域是[0,4],若關(guān)于t的方程|3-|t|-$\frac{1}{4}$|-n=0恰有4個互不相等的實數(shù)解,則m+n的取值范圍是$({-2,-\frac{7}{4}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=2cos($\frac{π}{2}$-x)sinx+(sinx+cosx)2
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)把y=f(x)的圖象上所有點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再把得到的圖象向左平移$\frac{π}{3}$個單位,得到函數(shù)y=g(x)的圖象,求$g(\frac{π}{6})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知集合A={a1,a2,…,am}.若集合A1∪A2∪A3∪…∪An=A,則稱A1,A2,A3,…,An為集合A的一種拆分,所有拆分的個數(shù)記為f(n,m).
(1)求f(2,1),f(2,2),f(3,2)的值;
(2)求f(n,2)(n≥2,n∈N*)關(guān)于n的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在如圖所示的圓錐中,OP是圓錐的高,AB是底面圓的直徑,點C是弧AB的中點,E是線段AC的中點,D是線段PB的中點,且PO=2,OB=1.
(1)試在PB上確定一點F,使得EF∥面COD,并說明理由;
(2)求點A到面COD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,角A,B,C對應(yīng)的邊分別是a,b,c,已知cos2C-3cos(A+B)=1.
(1)求角C的大。
(2)若c=2$\sqrt{3}$,求△ABC的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.?dāng)?shù)列-$\frac{1}{2}$,$\frac{1}{4}$,$-\frac{1}{8}$,$\frac{1}{16}$,…的一個通項公式可能是( 。
A.${(-1)^{n-1}}\frac{1}{2n}$B.${(-1)^{n-1}}\frac{1}{2^n}$C.${(-1)^n}\frac{1}{2n}$D.${(-1)^n}\frac{1}{2^n}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知i為虛數(shù)單位,復(fù)數(shù)z滿足(1-i)(z-1)=1+i,則z的共軛復(fù)數(shù)為( 。
A.-1-iB.1-iC.1+iD.-1+i

查看答案和解析>>

同步練習(xí)冊答案