分析 利用函數(shù)的奇偶性整理不等式為loga(x+1)>loga(1-x),對底數(shù)a分類討論得出x的范圍.
解答 解:f(x)-g(x)>0,即 loga(x+1)-loga(1-x)>0,loga(x+1)>loga(1-x).
當(dāng)0<a<1時,上述不等式等價于$\left\{\begin{array}{l}{x+1>0}\\{1-x>0}\\{x+1<1-x}\end{array}\right.$,解得-1<x<0;
當(dāng)a>1時,原不等式等價于$\left\{\begin{array}{l}{x+1>0}\\{1-x>0}\\{x+1>1-x}\end{array}\right.$,解得0<x<1.
綜上所述,當(dāng)0<a<1時,原不等式的解集為{x|-1<x<0};
當(dāng)a>1時,原不等式的解集為{x|0<x<1}.
故答案為:當(dāng)0<a<1時,原不等式的解集為{x|-1<x<0};a>1時,原不等式的解集為{x|0<x<1}.
點(diǎn)評 本題考查不等式的解法,對底數(shù)a的分類討論是關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,1] | B. | [1,2] | C. | [$\sqrt{2}$,4] | D. | [$\sqrt{2}$,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 16 | B. | 8 | C. | 4 | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com