分析 (1)原式利用誘導(dǎo)公式化簡,進(jìn)而利用同角三角函數(shù)基本關(guān)系式即可化簡得解.
(2)由已知利用兩角和的正切函數(shù)公式,特殊角的三角函數(shù)值可得tanα+tanβ=tanαtanβ-1,將所求變形后計算可得到結(jié)果.
解答 解:(1)$\frac{sin(540°-x)}{tan(900°-x)}$•$\frac{cos(360°-x)}{tan(450°-x)tan(810°-x)}$•$\frac{1}{sin(-x)}$
=$\frac{sinx}{(-tanx)}$•$\frac{cosx}{cotx•cotx}$•$\frac{1}{(-sinx)}$
=sinx.
(2)∵$α+β=\frac{3π}{4}$,
∴tan(α+β)=-1=$\frac{tanα+tanβ}{1-tanαtanβ}$,可得:tanα+tanβ=tanαtanβ-1,
∴(1-tanα)(1-tanβ)=1-(tanα+tanβ)+tanαtanβ=1-(tanαtanβ-1)+tanαtanβ=2.
點評 此題考查了運用誘導(dǎo)公式,同角三角函數(shù)基本關(guān)系式,兩角和的正切函數(shù)公式,特殊角的三角函數(shù)值在化簡求值中的應(yīng)用,熟練掌握誘導(dǎo)公式是解本題的關(guān)鍵,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 9 | C. | 10 | D. | 11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com