10.若二次函數(shù)y=x2-2x+2與y=-x2+ax+b(a>0,b>0)在它們的一個交點處的切線互相垂直,則ab的最大值為(  )
A.$\frac{5}{2}$B.$\frac{5}{4}$C.$\frac{25}{8}$D.$\frac{25}{16}$

分析 先對兩個二次函數(shù)進(jìn)行求導(dǎo),然后設(shè)交點坐標(biāo),根據(jù)它們在一個交點處的切線相互垂直可得到a+b=$\frac{5}{2}$,再由基本不等式可求得最大值.

解答 解:∵y=x2-2x+2,∴y'=2x-2,
∵y=-x2+ax+b,∴y'=-2x+a,
設(shè)交點為(x0,y0),
∵它們在一個交點處切線互相垂直,
∴(2x0-2)(-2x0+a)=-1,即4x02-(2a+4)x0+2a-1=0,①
由交點分別代入二次函數(shù)式,整理得,
2x02-(2+a)x0+2-b=0,即4x02-(4+2a)x0+4-2b=0,②
由①②整理得 2a-1-4+2b=0,即a+b=$\frac{5}{2}$,(a>0,b>0)
∴ab≤$(\frac{a+b}{2})^{2}$=$\frac{25}{16}$,
∴ab的最大值為$\frac{25}{16}$.
故選:D.

點評 本題主要考查基本不等式的應(yīng)用,利用導(dǎo)數(shù)的幾何意義是解決本題的關(guān)鍵,一定要注意用基本不等式的條件“一正、二定、三相等”.綜合性較強(qiáng),運算量較大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=(ax+b)lnx-bx+3在(1,f(1))處的切線方程為y=2.
(1)求a,b的值及函數(shù)f(x)的極值;
(2)證明:$\frac{ln2}{2}×\frac{ln3}{3}×\frac{ln4}{4}×…×\frac{lnn}{n}<\frac{1}{n}(n≥2,n∈N)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.如圖所示的三角形數(shù)陣教“牛頓調(diào)和三角形”,它們是由整數(shù)的倒數(shù)組成的,第n行有n個數(shù)且兩端的數(shù)均為$\frac{1}{n}({n≥2})$,每個數(shù)是它下一行左右相鄰兩數(shù)的和,如圖

則(1)第6行第2個數(shù)(從左到右)為$\frac{1}{30}$;
(2)第n行第3個數(shù)(從左到右)為$\frac{1}{n(n-1)(n-2)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的長軸長為4,焦距為2.
(Ⅰ) 求C的方程;
(Ⅱ) 過點P(0,3)的直線m與軌跡C交于A,B兩點.若A是PB的中點,求直線m的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知直線l過點P(2,3),
(1)若直線l在x軸、y軸上的截距之和等于0,求直線l的方程;
(2)若直線l與兩條坐標(biāo)軸在第一象限所圍成的三角形的面積為16,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖(1),在三角形PCD中,AB為其中位線,且2BD=PC=2$\sqrt{6}$,CD=2$\sqrt{2}$,若沿AB將三角形PAB折起,使∠PAD=120°,構(gòu)成四棱錐P-ABCD,如圖(2),E和F分別是棱CD和PC的中點,
(1)求證:平面BEF⊥平面PCD;
(2)求平面PBC與平面PAD所成的二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=$\left\{\begin{array}{l}{{e}^{x}-x-2,x≥0}\\{{x}^{2}+2x,x<0}\end{array}\right.$的零點個數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若函數(shù)f(x)=x3-mx-1在R上存在三個零點,則實數(shù)m的取值范圍是($\frac{3}{\root{3}{4}}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案