3.$\int_0^{\frac{π}{2}}{2xdx}$的值是( 。
A.$\frac{π^2}{4}$B.$-\frac{π^2}{4}$C.πD.

分析 根據(jù)定積分的計(jì)算法則計(jì)算即可

解答 解:$\int_0^{\frac{π}{2}}{2xdx}$=x2|${\;}_{0}^{\frac{π}{2}}$=$\frac{{π}^{2}}{4}$,
故選:A.

點(diǎn)評(píng) 本題考查了定積分的計(jì)算,關(guān)鍵是求出原函數(shù),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知f(x)=(x-a)2+4ln(x+1)的圖象在點(diǎn)(1,f(1))處的切線與y軸垂直.
(1)求實(shí)數(shù)a的值;             
(2)求出f(x)的所有極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知{an}(n=1,2,3,…)是由非負(fù)整數(shù)組成的無窮數(shù)列,該數(shù)列前n項(xiàng)的最大值記為An,第n項(xiàng)之后各項(xiàng)an+1,an+2,…的最小值記為Bn,dn=An-Bn
(1)若{an}滿足a1=3,當(dāng)n≥2時(shí),${a_n}={3^n}-1$,寫出d1,d2,d3的值;
(2)設(shè)d是非負(fù)整數(shù),證明:dn=-d的充分必要條件為{an}是公差為d的等差數(shù)列;
(3)若{an}的通項(xiàng)公式為${a_n}={2^n}$,求數(shù)列$\left\{{-\frac{n^2}{d_n}}\right\}$的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.五位同學(xué)圍成一圈依次循環(huán)報(bào)數(shù),規(guī)定:
?第一位同學(xué)首次報(bào)出的數(shù)為1,第二位同學(xué)首次報(bào)出的數(shù)也為1,之后每位同學(xué)所報(bào)出的數(shù)都是前兩位同學(xué)所報(bào)出的數(shù)之和;
?若報(bào)出的數(shù)為3的倍數(shù),則報(bào)該數(shù)的同學(xué)需拍手一次,當(dāng)?shù)?0個(gè)數(shù)被報(bào)出時(shí),五位同學(xué)拍手的總次數(shù)為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知銳角三角形ABC中的內(nèi)角A,B,C的對邊分別為a,b,c,向量$\overrightarrow{m}$=(2sinB,$\sqrt{3}$),$\overrightarrow{n}$=(2cos2$\frac{B}{2}$-1,cos2B),且$\overrightarrow{m}$⊥$\overrightarrow{n}$.
(1)求函數(shù)f(x)=sin2xcosB-cos2xsinB的最小正周期及單調(diào)遞增區(qū)間.
(2)若b=4,求三角形ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,已知點(diǎn)F為拋物線E:y2=2px(p>0)的焦點(diǎn),點(diǎn)A(2,m)在拋物線E上,且|AF|=3.
(1)求拋物線E的方程;
(2)已知點(diǎn)G(-1,0),延長AF交拋物線E于點(diǎn)B,證明:GF為角AGB的角平分線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某實(shí)體公司老板給員工兩個(gè)加薪的方案:①每年年末加1000元;②每半年結(jié)束時(shí)加300元.
(Ⅰ)若在該公司干10年,問兩種方案在10年內(nèi)可分別獲得加薪工資共多少元?
(Ⅱ)如果由你選擇,你會(huì)選擇其中的哪一種加薪方案比較合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖所示,D,C,B三點(diǎn)在地面的同一直線上,CD=a,從D,C兩點(diǎn)測得A的仰角分別是α,β(α<β),則點(diǎn)A離地面的高AB等于( 。
A.$\frac{acosαcosβ}{cos(β-α)}$B.$\frac{acosαcosβ}{sin(β-α)}$C.$\frac{asinαsinβ}{cos(β-α)}$D.$\frac{asinαsinβ}{sin(β-α)}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.一個(gè)空間幾何體的三視圖及尺寸如圖所示,則該幾何體的體積是( 。
A.$\frac{π}{3}$+2$\sqrt{3}$B.$\frac{π}{3}$+$\sqrt{3}$C.π+2$\sqrt{3}$D.$\frac{2π}{3}$+$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊答案