18.已知銳角三角形ABC中的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,向量$\overrightarrow{m}$=(2sinB,$\sqrt{3}$),$\overrightarrow{n}$=(2cos2$\frac{B}{2}$-1,cos2B),且$\overrightarrow{m}$⊥$\overrightarrow{n}$.
(1)求函數(shù)f(x)=sin2xcosB-cos2xsinB的最小正周期及單調(diào)遞增區(qū)間.
(2)若b=4,求三角形ABC的面積的最大值.

分析 由兩向量的坐標(biāo)及兩向量垂直,得到兩向量數(shù)量積為0求出B的度數(shù),
(1)f(x)解析式利用兩角和與差的正弦函數(shù)公式化為一個(gè)角的正弦函數(shù),將B的度數(shù)代入,根據(jù)最小正周期以及正弦函數(shù)的單調(diào)增區(qū)間求出x的范圍即可;
(2)由b及cosB的值,利用余弦定理列出關(guān)系式,利用基本不等式變形后,求出ac的最大值,利用三角形的面積公式表示出三角形ABC的面積,將ac的最大值代入計(jì)算即可求出三角形ABC面積的最大值.

解答 解:∵$\overrightarrow{m}$=(2sinB,$\sqrt{3}$),$\overrightarrow{n}$=(2cos2$\frac{B}{2}$-1,cos2B),且$\overrightarrow{m}$⊥$\overrightarrow{n}$.
∴$\overrightarrow{m}$•$\overrightarrow{n}$=2sinB(2cos2$\frac{B}{2}$-1)+$\sqrt{3}$cos2B=sin2B+$\sqrt{3}$cos2B=2sin(2B+$\frac{π}{3}$)=0,
∴2B+$\frac{π}{3}$=0或2B+$\frac{π}{3}$=π
解得B=-$\frac{π}{6}$(舍去),或B=$\frac{π}{3}$,
(1)f(x)=sin2xcosB-cos2xsinB=sin(2x-B)=sin(2x-$\frac{π}{3}$),
最小正周期T=$\frac{2π}{2}$=π
由2x-$\frac{π}{3}$∈[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$],k∈Z,得函數(shù)f(x)的單調(diào)增區(qū)間為[kπ-$\frac{π}{12}$,kπ+$\frac{5}{12}$],k∈Z;
(2)由余弦定理得:16=a2+c2-2accos$\frac{π}{3}$=a2+c2-ac≥ac,
∴S△ABC=$\frac{1}{2}$acsin$\frac{π}{3}$≤4$\sqrt{3}$,
則△ABC面積的最大值為4$\sqrt{3}$.

點(diǎn)評(píng) 此題考查了余弦定理,平面向量的數(shù)量積運(yùn)算,正弦函數(shù)的單調(diào)性,三角形面積公式,以及基本不等式的運(yùn)用,熟練掌握余弦定理是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)集合A={x|-1≤x<2},B={x|x-k≥0},若A∩B≠∅,則k的取值范圍是( 。
A.(-∞,2]B.(-∞,2)C.[-1,+∞)D.[-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1內(nèi)任取一點(diǎn)M,則點(diǎn)M到正方體的中心的距離不大于1的概率為(  )
A.$\frac{π}{18}$B.$\frac{π}{12}$C.$\frac{π}{6}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=ax-lnx-4(a∈R).
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)當(dāng)a=2時(shí),若存在區(qū)間$[{m,n}]⊆[{\frac{1}{2},+∞})$,使f(x)在[m,n]上的值域是$[{\frac{k}{m+1},\frac{k}{n+1}}]$,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知集合M={0,1,2,3},N={x|x2-x-2≤0},P=M∩N,則集合P的子集共有(  )
A.2個(gè)B.4個(gè)C.6個(gè)D.8個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.$\int_0^{\frac{π}{2}}{2xdx}$的值是( 。
A.$\frac{π^2}{4}$B.$-\frac{π^2}{4}$C.πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知A=${∫}_{0}^{3}$|x2-1|dx,則A=$\frac{22}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知函數(shù)f(x)=2x+1的導(dǎo)數(shù)為f′(x),則f′(0)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{1+2lnx}{x^2}$.
(1)求f(x)的單調(diào)區(qū)間;
(2)存在x1,x2∈(1,+∞)且x1≠x2,使|f(x1)-f(x2)|≥k|lnx1-lnx2|成立,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案