1.?dāng)?shù)列{an}滿足:an+2=an+1+an,且a1=a2=1,則a7=( 。
A.7B.8C.13D.21

分析 利用遞推關(guān)系即可得出.

解答 解:∵an+2=an+1+an,且a1=a2=1,
∴a3=a1+a2=2,同理可得:a4=3,a5=5,a6=8,a7=13.
故選:C.

點(diǎn)評 本題考查了數(shù)列的遞推關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖:一個(gè)質(zhì)點(diǎn)在第一象限運(yùn)動,在第一秒鐘它由原點(diǎn)運(yùn)動到點(diǎn)(0,1),而后接著按圖所示在與x軸y軸平行的方向運(yùn)動,且每秒移動一個(gè)單位長度,那么416秒后,這個(gè)質(zhì)點(diǎn)所處的位置的坐標(biāo)是(20,16).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.橢圓$\left\{{\begin{array}{l}{x=3cosϕ}\\{y=4sinϕ}\end{array}}$(ϕ為參數(shù))的長軸長為( 。
A.3B.5C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=x+$\frac{3}{x}$+2,(x≥$\sqrt{3}$).
①判斷函數(shù)y=f(x)在區(qū)間[$\sqrt{3}$,+∞)上的單調(diào)性,并加以證明.
②若函數(shù)g(x)=f(x)+x2-3x-$\frac{3}{x}$,且滿足g(x)≥a恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)=2x|log0.5x|-1的零點(diǎn)個(gè)數(shù)為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知點(diǎn)A的極坐標(biāo)為(2,$\frac{3π}{4}$),則它的直角坐標(biāo)是( 。
A.(2,2)B.(1,$\frac{{\sqrt{2}}}{2}$ )C.(-$\sqrt{2}$,$\sqrt{2}$)D.($\sqrt{2}$,-$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖,已知四棱柱ABCD-A1B1C1D1的底面ABCD是矩形,AB=4,AD=3,AA1=5,∠BAA1=∠DAA1=60°,則A1C的長為$\sqrt{85}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.命題“若x2<9,則-3<x<3”的逆否命題是( 。
A.若x2≥9,則x≥3或x≤-3B.若-3<x<3,則x2<9
C.若x>3或x<-3,則x2>9D.若x≥3或x≤-3,則x2≥9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知復(fù)數(shù)z=$\frac{{{m^2}-m-6}}{m+3}$+(m2-2m-15)i
(1)m取何實(shí)數(shù)值時(shí),z是實(shí)數(shù)?
(2)m取何實(shí)數(shù)值時(shí),z是純虛數(shù)?

查看答案和解析>>

同步練習(xí)冊答案