20.一個(gè)直徑AB=2的半圓,過A作這個(gè)圓所在平面的垂線,在垂線上取一點(diǎn)S,使AS=AB,C為半圓上一個(gè)動(dòng)點(diǎn),N,M分別為A在SC,SB上的射影.當(dāng)三棱錐S-AMN的體積最大時(shí),∠BAC的余弦值為$\frac{\sqrt{3}}{3}$.

分析 推導(dǎo)出SA⊥BC,BC⊥AC,從而BC⊥平面SAC,再推導(dǎo)出AN⊥平面SBC,得AN⊥SB,又AM⊥SB,從而SM為三棱錐S-AMN中平面AMN上的高,進(jìn)而得到當(dāng)AN=MN=1時(shí),△AMN的面積S取得最大值,由此能求出當(dāng)三棱錐S-AMN的體積最大時(shí)∠BAC的余弦值.

解答 解:如圖所示,SA⊥平面ABC,BC?平面ABC,
所以SA⊥BC,又由BC⊥AC,SA∩AC=A,
SA,AC?平面SAC,所以BC⊥平面SAC,
又由AN?平面SAC,所以BC⊥AN,
又由AN⊥SC,SC∩BC=C,SC,BC?平面SBC,
所以AN⊥平面SBC,
又由SB?平面SBC,所以AN⊥SB,
又由AM⊥SB,AN∩AM=A,AM,AN?平面AMN,
所以SB⊥平面AMN,即SM為三棱錐S-AMN中平面AMN上的高,
因?yàn)镾A=AB=2,所以AM=SM=$\sqrt{2}$,
而AN⊥MN,故△AMN是斜邊為$\sqrt{2}$的直角三角形,
故當(dāng)AN=MN=1時(shí),△AMN的面積S取得最大值,
∵SA=2,AN=1,AN⊥SC,∴∠ASC=30°,∴SC=2AC,
∴SA2=(2AC)2-AC2,即4=3AC2,解得AC=$\frac{2\sqrt{3}}{3}$,
所以cos$∠BAC=\frac{AC}{AB}$=$\frac{\sqrt{3}}{3}$.
故當(dāng)三棱錐S-AMN的體積最大時(shí)∠BAC的余弦值為$\frac{\sqrt{3}}{3}$.
故答案為:$\frac{\sqrt{3}}{3}$.

點(diǎn)評(píng) 本題考查當(dāng)三棱錐的體積最大時(shí)角的余弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)y=sin x,x∈[0,2π]的圖象與直線y=-$\frac{1}{2}$的交點(diǎn)有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)f(x)=$\left\{\begin{array}{l}{{a}^{x},x≤1}\\{{x}^{2}-a,x>1}\end{array}\right.$且f(2$\sqrt{2}$)=3,則a=5;f(f(2))=$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.直線3x-4y-3=0與直線6x+my+2m=0平行,則它們之間的距離是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)數(shù)列{an}是公差不為0的等差數(shù)列,a1=1且a1,a3.a(chǎn)6成等比數(shù)列,則數(shù)列{an}的公差d=$\frac{1}{4}$,前n項(xiàng)和 Sn$\frac{1}{8}{n}^{2}+\frac{7}{8}n$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)是定義在R上的奇函數(shù),設(shè)其導(dǎo)函數(shù)為f′(x),當(dāng)x∈(-∞,0]時(shí),恒有xf′(x)<f(-x),令F(x)=xf(x),則滿足F(3)>F(2x-3)的實(shí)數(shù)x的取值范圍是(0,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知數(shù)列{an}的前n項(xiàng)和Sn=1-5+9-13+17-21+…+(-1)n-1(4n-3),則S10=( 。
A.-20B.-21C.20D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知f(x)=$\left\{\begin{array}{l}{x-5,x≥7}\\{f(x+2),x<7}\end{array}\right.$,則f(-2)=( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.$\sqrt{2}$+$\sqrt{7}$和$\sqrt{3}$+$\sqrt{6}$中較大的為$\sqrt{3}$+$\sqrt{6}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案