9.已知$\overrightarrow a=(x+1,y-1),\overrightarrow b=(1,-1)$,$\overrightarrow a⊥\overrightarrow b$,則$|\overrightarrow a+\overrightarrow b|$的最小值為( 。
A.$\sqrt{2}$B.2C.$2\sqrt{2}$D.以上都不對

分析 由向量垂直的坐標運算可得x-y=2.求出$\overrightarrow{a}+\overrightarrow$的坐標,代入向量的模,轉(zhuǎn)化為關(guān)于x的二次函數(shù)求解.

解答 解:由$\overrightarrow a=(x+1,y-1),\overrightarrow b=(1,-1)$,$\overrightarrow a⊥\overrightarrow b$,
得(x+1)×1+(y-1)×(-1)=x+1-y+1=0,即x-y=2.
∴$|\overrightarrow a+\overrightarrow b|$=|(x+2,y-2)|=$\sqrt{(x+2)^{2}+(y-2)^{2}}=\sqrt{(x+2)^{2}+(x-4)^{2}}$
=$\sqrt{2{x}^{2}-4x+20}=\sqrt{2(x-1)^{2}+18}$.
∴$|\overrightarrow{a}+\overrightarrow{|}_{min}=3\sqrt{2}$.
故選:D.

點評 本題考查平面向量的數(shù)量積運算,訓練了利用配方法求二次函數(shù)的最值,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

19.某空間幾何體的三視圖如圖所示,則該幾何體的表面積是60.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.以下四個命題中,其中正確的個數(shù)為( 。
 ①命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2=0”;
 ②“$α=\frac{π}{4}$”是“cos2α=0”的充分不必要條件;
 ③若命題$p:?{x_0}∈R,x_0^2+{x_0}+1=0$,則?p:?x∈R,x2+x+1=0;
 ④若p∧q為假,p∨q為真,則p,q有且僅有一個是真命題.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知等差數(shù)列{an}的首項為4,公差為2,前n項和為Sn,若Sk-ak+5=44(k∈N*),則k的值為( 。
A.6B.7C.8D.7或-8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.下列對應(yīng)關(guān)系f中,不是從集合A到集合B的映射的是( 。
A.A={x|x≥0},B=R,f:求算術(shù)平方根B.A=R,B=R,f:取絕對值
C.A=R,B=R,f:取倒數(shù)D.A=R+,B=R,f:求平方

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.若x4=a(x-1)4+b(x-1)3+c(x-1)2+d(x-1)+e,則a+b+c+d等于( 。
A.0B.15C.16D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知向量$\overrightarrow a$=$({-1,\left.{\sqrt{3}})},\right.\overrightarrow b$=$({\sqrt{3},\left.{-1})}\right.$,則$\overrightarrow a$與$\overrightarrow b$的夾角等于$\frac{5π}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,求向量$\overrightarrow{a}$+2$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.下列命題
①命題“?x0∈R,x02+1>3x0”的否定是“?x∈R,x2+1≤3x”;
②“函數(shù)f(x)=cos2ax-sin2ax的最小正周期為π”是“a=1”的必要不充分條件;
③“平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角是鈍角”的充分必要條件是“$\overrightarrow{a}•\overrightarrow$<0”;
④設(shè)有四個函數(shù)y=x-1,y=${x^{\frac{1}{2}}}$,y=x2,y=x3其中在(0,+∞)上是增函數(shù)的函數(shù)有3個.
真命題的序號是①②④.

查看答案和解析>>

同步練習冊答案