銀川市有甲,乙兩家室內(nèi)羽毛球館,兩家設(shè)備和服務(wù)都相當(dāng),但收費(fèi)方式不同.甲羽毛球館每小時(shí)50元;乙羽毛球館按月計(jì)費(fèi),一個月中30小時(shí)以內(nèi)(含30小時(shí))900元,超過30小時(shí)的部分每小時(shí)20元.肖老師為了鍛煉身體,準(zhǔn)備下個月從這兩家羽毛球館中選擇一家進(jìn)行健身活動,其活動時(shí)間不少于15小時(shí),也不超過40小時(shí).設(shè)甲羽毛球館健身x小時(shí)的收費(fèi)為f(x)元,乙羽毛球館健身x小時(shí)的收費(fèi)為g(x)元.
(Ⅰ)當(dāng)15≤x≤40時(shí),分別寫出函數(shù)f(x)和g(x)的表達(dá)式;
(Ⅱ)請問肖老師選擇哪家羽毛球館健身比較合算?為什么?
考點(diǎn):根據(jù)實(shí)際問題選擇函數(shù)類型
專題:計(jì)算題,應(yīng)用題,函數(shù)的性質(zhì)及應(yīng)用
分析:(Ⅰ)當(dāng)15≤x≤40時(shí),寫出f(x)=50x,g(x)=
900,15≤x≤30
900+20(x-30),30<x≤40
;
(Ⅱ)作差比較f(x)和g(x)的大小即可.
解答: 解:(Ⅰ)當(dāng)15≤x≤40時(shí),
f(x)=50x;
g(x)=
900,15≤x≤30
900+20(x-30),30<x≤40
;
(Ⅱ)當(dāng)15≤x≤30時(shí),
f(x)-g(x)=50x-900=50(x-18);
故當(dāng)15≤x<18時(shí),選甲羽毛球館更合算;
當(dāng)x=18時(shí),選甲、乙羽毛球館都可以;
當(dāng)18<x≤30時(shí),選乙羽毛球館更合算;
當(dāng)30<x≤40時(shí),
f(x)-g(x)=50x-(300+20x)
=30x-300=30(x-10)>0;
故選乙羽毛球館更合算;
綜上所述,
當(dāng)15≤x<18時(shí),選甲羽毛球館更合算;
當(dāng)x=18時(shí),選甲、乙羽毛球館都可以;
當(dāng)18<x≤40時(shí),選乙羽毛球館更合算.
點(diǎn)評:本題考查了段函數(shù)在實(shí)際問題中的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,且an=2n+1,則公差d=( 。
A、1B、2C、3D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2014年8月以“分享青春,共筑未來”為口號的青奧會在江蘇南京舉行,為此某商店經(jīng)銷一種青奧會紀(jì)念徽章,每枚徽章的成本為30元,并且每賣出一枚徽章需向相關(guān)部門上繳a元(a為常數(shù),2≤a≤5).設(shè)每枚徽章的售價(jià)為x元(35≤a≤41),根據(jù)市場調(diào)查,日銷售量與ex(e為自然對數(shù)的底數(shù))成反比例.已知當(dāng)每枚徽章的售價(jià)為40元時(shí),日銷售量為10枚.
(1)求該商店的日利潤L(x)與每枚徽章的售價(jià)x的函數(shù)關(guān)系式;
(2)當(dāng)每枚徽章的售價(jià)為多少元時(shí),該商店的日利潤L(x)最大?并求出L(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos2x+2
3
sinxcosx-sin2x
(1)求f(
π
6
)的值
(2)求函數(shù)的單調(diào)增區(qū)間
(3)若x∈[-
π
6
π
3
],求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個盒子里裝有5個小球,其中紅球3個,編號分別為1,2,3;白球2個,編號分別為2,3從盒子中取出3個球(假設(shè)取到任何一個球的可能性相同)
(Ⅰ)求取出的3個球中,含有編號為2的球的概率;
(Ⅱ)在取出的3個球中,紅球編號的最大值設(shè)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)x∈(0,
π
3
)時(shí),y=sin(3x-
π
6
)的取值范圍是( 。
A、(-
1
2
,
1
2
B、[-
1
2
,1]
C、(-
1
2
,1)
D、(-
1
2
,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2是雙曲線
x2
a2
-
y2
b2
=1
(a>b>0)的左右兩個焦點(diǎn),以線段F1F2為直徑的圓與雙曲線的一條漸近線交于點(diǎn)M,與雙曲線交于點(diǎn)N(設(shè)M,N均在第一象限),當(dāng)直線MF1與直線ON平行時(shí),雙曲線的離心率取值為e0,則e0所在的區(qū)間為(  )
A、(1,
2
B、(
2
3
C、(
3
,2
D、(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=log2(x2-ax+3a)在[2,+∞)上是增函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A、a≤4B、a≤2
C、-4<a≤4D、-2≤a≤4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:2x+y-1=0,直線l2經(jīng)過點(diǎn)A(-2,m)和點(diǎn)B(m,4),
(I) 若l1∥l2,求實(shí)數(shù)m的值; 
(Ⅱ) 若點(diǎn)A、B分別在直線l1的兩側(cè),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案