5.設(shè)函數(shù)f(x)=$\sqrt{{e}^{x}+x-a}$,(a∈R,e為自然對數(shù)的底數(shù)). 若存在b∈[0,1],使f(f(b))=b成立.
(1)證明:f(b)=b;
(2)求a的最大值.

分析 (1)利用反證法,即可證明.
(2)根據(jù)題意,問題轉(zhuǎn)化為“存在b∈[0,1],使f(b)=f-1(b)”,即y=f(x)的圖象與函數(shù)y=f-1(x)的圖象有交點,且交點的橫坐標(biāo)b∈[0,1].由y=f(x)的圖象與y=f-1(x)的圖象關(guān)于直線y=x對稱,得到函數(shù)y=f(x)的圖象與y=x有交點,且交點橫坐標(biāo)b∈[0,1].因此,將方程化簡整理得ex=x2-x+a,記F(x)=ex,G(x)=x2-x+a,由零點存在性定理建立關(guān)于a的不等式組,解之即可得到實數(shù)a的取值范圍.

解答 解:(1)假設(shè)f(b)≠b,則f(b)>b或f(b)<b,
∵f(x)=$\sqrt{{e}^{x}+x-a}$,(a∈R,e為自然對數(shù)的底數(shù)).在其定義域為增函數(shù),
∴f(f(b))>f(b)或f(f(b))<b,
這與f(f(b))=b成立相矛盾,
故假設(shè)不成立,
∴f(b)=b;
(2)由f(f(b))=b,可得f(b)=f-1(b)
其中f-1(x)是函數(shù)f(x)的反函數(shù)
因此命題“存在b∈[0,1]使f(f(b))=b成立”,轉(zhuǎn)化為
“存在b∈[0,1],使f(b)=f-1(b)”,
即y=f(x)的圖象與函數(shù)y=f-1(x)的圖象有交點,
且交點的橫坐標(biāo)b∈[0,1],
∵y=f(x)的圖象與y=f-1(x)的圖象關(guān)于直線y=x對稱,
∴y=f(x)的圖象與函數(shù)y=f-1(x)的圖象的交點必定在直線y=x上,
由此可得,y=f(x)的圖象與直線y=x有交點,且交點橫坐標(biāo)b∈[0,1],
根據(jù)$\sqrt{{e}^{x}+x-a}$=x,化簡整理得ex=x2-x+a
記F(x)=ex,G(x)=x2-x+a,在同一坐標(biāo)系內(nèi)作出它們的圖象,
可得$\left\{\begin{array}{l}{F(0)≤G(0)}\\{F(1)≥G(1)}\end{array}\right.$,即$\left\{\begin{array}{l}{{e}^{0}<{0}^{2}-0+a}\\{e>1-1+a}\end{array}\right.$,解之得1≤a≤e
即實數(shù)a的取值范圍為[1,e]
故選:A

點評 本題給出含有根號與指數(shù)式的基本初等函數(shù),在存在b∈[0,1]使f(f(b))=b成立的情況下,求參數(shù)a的取值范圍.著重考查了基本初等函數(shù)的圖象與性質(zhì)、函數(shù)的零點存在性定理和互為反函數(shù)的兩個函數(shù)的圖象特征等知識,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知f(x)=x7-ax5+bx3+cx+2,若f(-3)=-3,則f(3)=7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.tan($\frac{π}{6}$-α)=$\frac{\sqrt{3}}{3}$,則tan($\frac{5π}{6}$+α)=( 。
A.-$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{3}$C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在平面直角坐標(biāo)系中,曲線C1的參數(shù)方程為:$\left\{{\begin{array}{l}{x=4cosθ}\\{y=3sinθ}\end{array}}$(θ為參數(shù)),以坐標(biāo)原點O為極點,x軸的非負半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為$ρsin({θ+\frac{π}{4}})=\frac{{5\sqrt{2}}}{2}$.
(1)求曲線C2的直角坐標(biāo)方程;
(2)已知點M曲線C1上任意一點,求點M到曲線C2的距離d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某種種子每粒發(fā)芽的概率都為0.8,現(xiàn)播種了100粒,對于沒有發(fā)芽的種子,每粒需再補種3粒,補種的種子數(shù)記為X.
(1)求X=30的概率(只列式即可);
(2)求隨機變量X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在△ABC中,角A,B,C所對的邊分別為a,b,c,且acosB-bcosA=$\frac{1}{2}$c,當(dāng)tan(A-B)取最大值時,則角C的值為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在直角坐標(biāo)系xOy中,以O(shè)為極點,x軸為正半軸建立直角坐標(biāo)系,曲線M的方程為ρ2(3+cos2θ)=8.
(1)求曲線的直角坐標(biāo)方程
(2)若點A(0,m),B(n,0)在曲線M上,點F(0,-$\sqrt{{m^2}-{n^2}}}$),F(xiàn)P平行于x軸交曲線M于點P(x0,y0),其中m>0,n>0,x0>0,求證:PO∥BA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.命題p:任意一個三角形,兩邊之和大于第三邊,
命題q:任意一個三角形,兩邊之差小于第三邊.
寫出命題“p∧q,p∨q,¬p”形式的復(fù)合命題,并指出其真假.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.為了解某校身高在1.60m~1.78m的高一學(xué)生的情況,隨機地抽查了該校200名高一學(xué)生,得到如圖1所示頻率直方圖.由于不慎將部分數(shù)據(jù)丟失,但知道前4組的頻數(shù)成等比數(shù)列,后6組的頻數(shù)成等差數(shù)列,設(shè)最大頻率為m,身高在1.66m~1.74m的學(xué)生數(shù)為n,則m,n的值分別為( 。
A.0.27,78B.0.27,156C.0.81,78D.0.09,83

查看答案和解析>>

同步練習(xí)冊答案