分析 (1)利用反證法,即可證明.
(2)根據(jù)題意,問題轉(zhuǎn)化為“存在b∈[0,1],使f(b)=f-1(b)”,即y=f(x)的圖象與函數(shù)y=f-1(x)的圖象有交點,且交點的橫坐標(biāo)b∈[0,1].由y=f(x)的圖象與y=f-1(x)的圖象關(guān)于直線y=x對稱,得到函數(shù)y=f(x)的圖象與y=x有交點,且交點橫坐標(biāo)b∈[0,1].因此,將方程化簡整理得ex=x2-x+a,記F(x)=ex,G(x)=x2-x+a,由零點存在性定理建立關(guān)于a的不等式組,解之即可得到實數(shù)a的取值范圍.
解答 解:(1)假設(shè)f(b)≠b,則f(b)>b或f(b)<b,
∵f(x)=$\sqrt{{e}^{x}+x-a}$,(a∈R,e為自然對數(shù)的底數(shù)).在其定義域為增函數(shù),
∴f(f(b))>f(b)或f(f(b))<b,
這與f(f(b))=b成立相矛盾,
故假設(shè)不成立,
∴f(b)=b;
(2)由f(f(b))=b,可得f(b)=f-1(b)
其中f-1(x)是函數(shù)f(x)的反函數(shù)
因此命題“存在b∈[0,1]使f(f(b))=b成立”,轉(zhuǎn)化為
“存在b∈[0,1],使f(b)=f-1(b)”,
即y=f(x)的圖象與函數(shù)y=f-1(x)的圖象有交點,
且交點的橫坐標(biāo)b∈[0,1],
∵y=f(x)的圖象與y=f-1(x)的圖象關(guān)于直線y=x對稱,
∴y=f(x)的圖象與函數(shù)y=f-1(x)的圖象的交點必定在直線y=x上,
由此可得,y=f(x)的圖象與直線y=x有交點,且交點橫坐標(biāo)b∈[0,1],
根據(jù)$\sqrt{{e}^{x}+x-a}$=x,化簡整理得ex=x2-x+a
記F(x)=ex,G(x)=x2-x+a,在同一坐標(biāo)系內(nèi)作出它們的圖象,
可得$\left\{\begin{array}{l}{F(0)≤G(0)}\\{F(1)≥G(1)}\end{array}\right.$,即$\left\{\begin{array}{l}{{e}^{0}<{0}^{2}-0+a}\\{e>1-1+a}\end{array}\right.$,解之得1≤a≤e
即實數(shù)a的取值范圍為[1,e]
故選:A
點評 本題給出含有根號與指數(shù)式的基本初等函數(shù),在存在b∈[0,1]使f(f(b))=b成立的情況下,求參數(shù)a的取值范圍.著重考查了基本初等函數(shù)的圖象與性質(zhì)、函數(shù)的零點存在性定理和互為反函數(shù)的兩個函數(shù)的圖象特征等知識,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{\sqrt{3}}{3}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\sqrt{3}$ | D. | -$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0.27,78 | B. | 0.27,156 | C. | 0.81,78 | D. | 0.09,83 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com