7.觀測(cè)一組x,y的數(shù)據(jù),利用兩種回歸模型計(jì)算得y=3.5x-2①與$y=\sqrt{x}-3$②,經(jīng)計(jì)算得模型①的$R_1^2=0.87$,模型②的$R_2^2=0.9$,下列說(shuō)法中正確的是( 。
A.模型①擬合效果好B.模型①與②的擬合效果一樣好
C.模型②擬合效果好D.模型①負(fù)相關(guān)

分析 相關(guān)指數(shù)R2的值越大,模型擬合的效果越好,可得答案.

解答 解:根據(jù)相關(guān)指數(shù)R2的值越大,模型擬合的效果越好,
∴模型2擬合的效果最好.
故選:C.

點(diǎn)評(píng) 本題考查了回歸分析思想,在兩個(gè)變量的回歸分析中,相關(guān)指數(shù)R2的值越大,模型擬合的效果越好.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知$f(x)=\frac{{3{e^{|x|}}-xcosx}}{{{e^{|x|}}}}$在$x∈[-\frac{π}{2},\frac{π}{2}]$上的最大值為p,最小值為q,則p+q=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.實(shí)數(shù)a取什么值時(shí),復(fù)數(shù)z=a2-1+(a+1)i.是
(I)實(shí)數(shù);
(Ⅱ)虛數(shù);
(Ⅲ)純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{1-sinx,x∈[0,π)}\\{{{log}_{2016}}\frac{x}{π},x∈[π,+∞)}\end{array}}\right.$若有三個(gè)不同的實(shí)數(shù)x1,x2,x3(x1<x2<x3),使得f(x1)=f(x2)=f(x3),則滿足x1+x2>4π-x3的事件的概率為$\frac{2013}{2015}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.命題p:$f(x)=\frac{2}{x-m}$在區(qū)間(-7,+∞)是減函數(shù),命題q:不等式${m^2}+5m-3≥\sqrt{{a^2}+8}$對(duì)任意的實(shí)數(shù)a∈[-1,1]恒成立.若(?p)∧q為真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若x>0,則函數(shù)y=x+$\frac{1}{x}$+$\frac{4x}{{x}^{2}+1}$的最小值為( 。
A.16B.8C.4D.非上述情況

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.某市在“國(guó)際禁毒日”期間,連續(xù)若干天發(fā)布了“珍愛生命,遠(yuǎn)離毒品”的電視公益廣告,期望讓更多的市民知道毒品的危害性.禁毒志愿者為了了解這則廣告的宣傳效果,隨機(jī)抽取了100名年齡階段在[10,20),[20,30),[30,40),[40,50),[50,60)的市民進(jìn)行問(wèn)卷調(diào)查,由此得到樣本頻率分布直方圖如圖所示.
(1)求隨機(jī)抽取的市民中年齡段在[30,40)的人數(shù);
(2)從不小于40歲的人中按年齡段分層抽樣的方法隨機(jī)抽取5人,求[50,60)年齡段抽取的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若$f(x)=\sqrt{3}{cos^2}kx-sinkxcoskx(k>0)$的圖象與直線y=m(m>0)相切,并且切點(diǎn)橫坐標(biāo)依次成公差為π的等差數(shù)列,則k=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知E、F、G、H分別為空間四邊形ABCD的邊AB、BC、CD、DA上的點(diǎn),且EE=2,EH=1,四邊形EFGH為平行四邊形.
(Ⅰ)求證:EH∥BD;
(Ⅱ)連結(jié)AC,若AC⊥BD,求FH的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案