13.已知點A(2,0),直線l:x=1,雙曲線H:x2-y2=2,P為H上任意一點,且到l的距離為d,則$\frac{{|{PA}|}}rvjcfib$=( 。
A.$\sqrt{2}$B.$\frac{{\sqrt{2}}}{2}$C.1D.2

分析 設(shè)P(x,y),根據(jù)兩點間的距離公式以及點到直線的距離公式進(jìn)行化簡即可.

解答 解:設(shè)P(x,y),則x2-y2=2,即x2-2=y2
則$\frac{{|{PA}|}}iiq9uhk$=$\frac{\sqrt{(x-2)^{2}+{y}^{2}}}{|x-1|}$=$\frac{\sqrt{{x}^{2}-4x+4+{x}^{2}-2}}{|x-1|}$=$\frac{\sqrt{2{x}^{2}-4x+2}}{|x-1|}$=$\frac{\sqrt{2(x-1)^{2}}}{|x-1|}=\frac{\sqrt{2}|x-1|}{|x-1|}$=$\sqrt{2}$,
故選:A

點評 本題主要考查雙曲線的方程和性質(zhì),根據(jù)兩點間的距離公式以及點到直線的距離公式進(jìn)行求解是解決本題的關(guān)鍵.考查學(xué)生的計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.對于復(fù)數(shù)z=a+bi(a、b∈R,i為虛數(shù)單位),定義‖z‖=|a|+|b|,給出下列命題:
①對任何復(fù)數(shù),都有‖z‖≥0,等號成立的充要條件是z=0;
②‖z‖=‖$\overline{z}$‖;③‖z1‖=‖z2‖,則z1=±z2;
④對任何復(fù)數(shù)z1,z2,z3,不等式‖z1-z3‖≤‖z1-z2‖+‖z2-z3‖恒成立,
其中真命題的個數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)F1,F(xiàn)2分別是雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦點,點M(3,$\sqrt{2}$)在此雙曲線上,且|MF1|與|MF2|的夾角的余弦值為$\frac{7}{9}$,則雙曲線C的離心率為(  )
A.$\frac{{2\sqrt{3}}}{3}$B.$\sqrt{2}$C.$\sqrt{3}$D.$\frac{{2\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知曲線f(x)=lnx+ax+b在(1,f(1))處的切線與此點的直線y=-$\frac{1}{2}$x+$\frac{3}{2}$垂直.
(1)求a,b的值;
(2)若函數(shù)f(x)在點P處的切線斜率為$\frac{1}{e}$+1,求函數(shù)f(x)在點P處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.雙曲線x2-$\frac{y^2}{3}$=1的漸近線方程為( 。
A.$\sqrt{3}$x±y=0B.3x±y=0C.x±$\sqrt{3}$y=0D.x±3y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若a≠b且ab≠0,則直線ax-y+b=0和二次曲線bx2+ay2=ab的形狀和位置可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知a>b>0,橢圓C1的方程為$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1,雙曲線C2的方程為$\frac{y^2}{a^2}$-$\frac{x^2}{b^2}$=1,C1與C2的離心率之積為$\frac{{\sqrt{3}}}{2}$,則C2的漸近線方程為( 。
A.$\sqrt{2}$x±y=0B.x±$\sqrt{2}$y=0C.2x±y=0D.x±2y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知中心在原點,焦點在x軸上的雙曲線C的離心率等于$\frac{3}{2}$,其中一條準(zhǔn)線方程為x=$\frac{4}{3}$,則雙曲線C的方程是( 。
A.$\frac{x^2}{4}-\frac{y^2}{5}$=1B.$\frac{x^2}{4}-\frac{y^2}{{\sqrt{5}}}$=1C.$\frac{x^2}{2}-\frac{y^2}{{\sqrt{5}}}$=1D.$\frac{x^2}{2}-\frac{y^2}{5}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.安排6志愿者去做3項不同的工作,每項工作需要2人,由于工作需要,A,B二人必須做同一項工作,C,D二人不能做同一項工作,那么不同的安排方案有12種.

查看答案和解析>>

同步練習(xí)冊答案