A. | ($\frac{π}{4}$,π) | B. | (-π,-$\frac{π}{4}$)∪($\frac{π}{4}$,π) | C. | (-$\frac{π}{4}$,0)∪(0,$\frac{π}{4}$) | D. | (-$\frac{π}{4}$,0)∪($\frac{π}{4}$,π) |
分析 設(shè)g(x)=$\frac{f(x)}{sinx}$,利用導(dǎo)數(shù)判斷出g(x)單調(diào)性,根據(jù)函數(shù)的單調(diào)性求出不等式的解集
解答 解:設(shè)g(x)=$\frac{f(x)}{sinx}$,
∴g′(x)=$\frac{f′(x)sinx-f(x)cosx}{si{n}^{2}x}$,
∵f(x)是定義在(-π,0)∪(0,π)上的奇函數(shù),
故g(-x)=$\frac{f(-x)}{sin(-x)}$=$\frac{-f(x)}{-sinx}$=g(x)
∴g(x)是定義在(-π,0)∪(0,π)上的偶函數(shù).
∵當(dāng)0<x<π時(shí),f′(x)sinx-f(x)cosx<0
∴g'(x)<0,
∴g(x)在(0,π)上單調(diào)遞減,
∴g(x)在(-π,0)上單調(diào)遞增.
∵f($\frac{π}{2}$)=0,
∴g($\frac{π}{2}$)=$\frac{f(\frac{π}{2})}{sin\frac{π}{2}}$=0,
∵f(x)<$\sqrt{2}$f($\frac{π}{4}$)sinx,即g($\frac{π}{4}$)>g(x);
①當(dāng)sinx>0時(shí),即x∈(0,π),所以x∈($\frac{π}{4}$,π);
②當(dāng)sinx<0時(shí),即x∈(-π,0)時(shí),g($\frac{π}{4}$)=g(-$\frac{π}{4}$)<g(x);
所以x∈(-$\frac{π}{4}$,0);
即不等式f(x)<$\sqrt{2}$f($\frac{π}{4}$)sinx的解集為解集為(-$\frac{π}{4}$,0)∪($\frac{π}{4}$,π),
故選:D
點(diǎn)評(píng) 求抽象不等式的解集,一般能夠利用已知條件判斷出函數(shù)的單調(diào)性,再根據(jù)函數(shù)的單調(diào)性將抽象不等式轉(zhuǎn)化為具體函的不等式解之
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,1) | B. | $(0,\frac{1}{3})$ | C. | $[\frac{1}{7},\frac{1}{3})$ | D. | $[\frac{1}{7},1)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 奇函數(shù),且在(0,2)上是增函數(shù) | B. | 奇函數(shù),且在(0,2)上是減函數(shù) | ||
C. | 偶函數(shù),且在(0,2)上是增函數(shù) | D. | 偶函數(shù),且在(0,2)上是減函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com