A. | 6π | B. | 12π | C. | 6$\sqrt{3}$π | D. | 6$\sqrt{2}$π |
分析 利用直線平面的垂直得出BD⊥BC,AD⊥AC利用直角三角形的性質(zhì)得出球心,即可求解外接球的半徑.
解答 解:∵AB=BC=AD=$\sqrt{2}$,BD=AC=2,BC⊥AD,
∴AB2+BC2=AC2,AD2+AB2=BD2,
AB⊥BC,AD⊥AB,
∵BC∩AB=C,AB∩BC=B,
∴BC⊥面ABD,AD⊥面ABC,
∵BD?面ABD,AC?面ACB;
∴BD⊥BC,AD⊥AC,
∵O為DC中點,
∴直角三角形中得出:OA=OB=OC=OD,
O 為外接球的球心,
半徑R=$\frac{1}{2}×\sqrt{{2}^{2}+(\sqrt{2})^{2}}$=$\frac{\sqrt{6}}{2}$,
∴三棱錐D-ABC外接球的表面積為:4π×($\frac{\sqrt{6}}{2}$)2=6π,
故選:A.
點評 本題綜合考查了直線平面的垂直的判斷性質(zhì)定理,綜合運用平面知識解決空間問題的能力.
科目:高中數(shù)學(xué) 來源: 題型:解答題
類型 | A類 | B類 | C類 |
已行駛總里程不超過10萬公里的車輛數(shù) | 10 | 40 | 30 |
已行駛總里程超過10萬公里的車輛數(shù) | 20 | 20 | 20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
產(chǎn)品編號 | ① | ② | ③ | ④ | ⑤ |
電壓(x) | 10 | 15 | 20 | 25 | 30 |
電流(y) | 0.6 | 0.8 | 1.4 | 1.2 | 1.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 2 | C. | 4 | D. | 5 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com