4.若定義在R上的不恒為零的函數(shù)f(x)滿足:?x,y∈R都有f2(x)-f2(y)=f(x+y)f(x-y),則稱函數(shù)f(x)為“平方差函數(shù)”,下列命題:
(1)若f(x)=$\left\{\begin{array}{l}{1,x≥0}\\{0,x<0}\end{array}\right.$,則f(x)為“平方差函數(shù)”;
(2)若f(x)=kx(k>0),則f(x)為“平方差函數(shù)”;
(3)若f(x)為“平方差函數(shù)”,則f(x)為奇函數(shù);
(4)若f(x)為“平方差函數(shù)”,則f(x)為增函數(shù).
其中正確命題的序號是(2)(3)(寫出所有正確命題的序號)

分析 根據(jù)平方差函數(shù)的定義分別進行驗證判斷即可.

解答 解:(1)若f(x)=$\left\{\begin{array}{l}{1,x≥0}\\{0,x<0}\end{array}\right.$,
則當x=2,y=1時,
則f2(x)-f2(y)=f2(2)-f2(1)=1-1=0,
f(x+y)f(x-y)=f(3)f(1)=1×1=1,
則f2(x)-f2(y)≠f(x+y)f(x-y),
則f(x)不是“平方差函數(shù)”;故(1)錯誤,
(2)若f(x)=kx(k>0),
則f2(x)-f2(y)=k2x2-k2y2=k2(x2-y2),
f(x+y)f(x-y)=k(x+y)•k(x-y)=k2(x2-y2),
滿足f2(x)-f2(y)=f(x+y)f(x-y),f(x)為“平方差函數(shù)”;故(2)正確,
(3)若f2(x)-f2(y)=f(x+y)f(x-y),
則令x=y=0,則f2(0)-f2(0)=f(0)f(0)=0,
則f(0)=0,
令x=0,則f2(0)-f2(y)=f(y)f(-y),
即-f2(y)=f(y)f(-y),
∵f(x)是定義在R上的不恒為零的函數(shù),
∴-f(y)=f(-y),
即函數(shù)f(-x)=-f(x),則f(x)是奇函數(shù),
則若f(x)為“平方差函數(shù)”,則f(x)為奇函數(shù)正確,故(3)正確;
(4)若f(x)=-x,則f2(x)-f2(y)=x2-y2,f(x+y)f(x-y)=-(x+y)•[-(x-y)]=x2-y2,
滿足f2(x)-f2(y)=f(x+y)f(x-y),即f(x)為“平方差函數(shù)”,則f(x)此時為減函數(shù),故(4)錯誤.
故答案為:(2)(3)

點評 本題主要考查命題的真假判斷,涉及函數(shù)的奇偶性和單調(diào)性的性質(zhì),正確理解平方差函數(shù)的定義是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

4.已知函數(shù)f(x)=loga|ax2-x|在[1,2]上單調(diào),則實數(shù)a的取值范圍是(0,$\frac{1}{4}$]∪{$\frac{1}{2}$}∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知a>b>0,試指出$\frac{a+b}{2}$-$\sqrt{ab}$,$\frac{(a-b)^{2}}{8a}$,$\frac{(a-b)^{2}}{8b}$的大小關系,并給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點F與拋物線y2=4x的焦點重合,且橢圓的離心率為$\frac{\sqrt{3}}{3}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)橢圓C上是否存在關于直線l:x+y=$\frac{1}{5}$對稱的兩點A、B,若存在,求出直線AB的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.體育課上,李老師對初三(1)班50名學生進行跳繩測試.現(xiàn)測得他們的成績(單位:個)全部介于20到70之間,將這些成績數(shù)據(jù)進行分組(第一組:(20,30],第二組:(30,40],…,第五組:(60,70]),并繪制成如圖所示的頻率分布直方圖.
(Ⅰ)求成績在第四組的人數(shù)和這50名同學跳繩成績的中位數(shù);
(Ⅱ)從成績在第一組和第五組的同學中隨機抽出3名同學進行搭檔訓練,設取自第一組的人數(shù)為ξ,求ξ的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知定義在R上的函數(shù)f(x)的圖象連續(xù)不斷,若存在常數(shù)t(t∈R),使得f(x+t)+tf(x)=0對任意的實數(shù)x成立,則稱f(x)是回旋函數(shù).給出下列四個命題:
①常值函數(shù)f(x)=a(a≠0)為回旋函數(shù)的充要條件是t=-1;
②若f(x)=ax(0<a<1)為回旋函數(shù),則t>1;
③函數(shù)f(x)=x2不是回旋函數(shù);
④若f(x)是t=2的回旋函數(shù),則f(x)在[0,4032]上至少有2016個零點.
其中為真命題的是①③④.(寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.某種填數(shù)字彩票,購票者花2元買一張小卡片,在卡片上填10以內(nèi)(0,1,2,…,9)的三個數(shù)字(允許重復).如果依次填寫的三個數(shù)字與開獎的三個有序的數(shù)字分別對應相等,得獎金1000元.只要有一個數(shù)字不符(大小或次序),無獎金.則購買一張彩票的期望收益是-1元.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.某射擊游戲規(guī)則如下:①射手共射擊三次:;②首先射擊目標甲;③若擊中,則繼續(xù)射擊該目標,若未擊中,則射擊另一目標;④擊中目標甲、乙分別得2分、1分,未擊中得0分.已知某射手擊中甲、乙目標的概率分別為$\frac{1}{2},\frac{3}{4}$,且該射手每次射擊的結果互不影響.
(Ⅰ)求該射手連續(xù)兩次擊中目標且另一次未擊中目標的概率;
(Ⅱ)記該射手所得分數(shù)為X,求X的分布列和數(shù)學期望EX.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知等比數(shù)列{an}中,a1=4,a5a7=4a82,則a3=( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.2D.1

查看答案和解析>>

同步練習冊答案