16.求函數(shù)f(x)=ln(x2-2x-3)的定義域及單調(diào)區(qū)間.

分析 令對(duì)數(shù)的真數(shù)大于零,求得x的范圍,即為函數(shù)的定義域.函數(shù)f(x)的單調(diào)區(qū)間,即t=x2-2x-3>0時(shí)的單調(diào)區(qū)間,利用二次函數(shù)的性質(zhì)得出結(jié)論.

解答 解:對(duì)于函數(shù)f(x)=ln(x2-2x-3),
令x2-2x-3>0,求得x<-1,或 x>3,
可得函數(shù)的定義域?yàn)閧x|x<-1,或 x>3 }.
在(-∞,-1)上,t=x2-2x-3單調(diào)遞減,故函數(shù)f(x)單調(diào)遞減,故函數(shù)f(x)的減區(qū)間為(-∞,-1);
在(3,+∞)上,t=x2-2x-3單調(diào)遞增,故函數(shù)f(x)單調(diào)遞增,故函數(shù)f(x)的增區(qū)間為 (3,+∞).

點(diǎn)評(píng) 本題主要考查復(fù)合函數(shù)的單調(diào)性,對(duì)數(shù)函數(shù)、二次函數(shù)的性質(zhì),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知數(shù)列{an}中,an=$\frac{1}{3}$(an-1+2an-2),(n≥3),其中a1=1,a2=2,求通項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若(2k2-3k-2)+(k2-2k)i是純虛數(shù),則實(shí)數(shù)k的值等于(  )
A.0或2B.2或$-\frac{1}{2}$C.$-\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知當(dāng)x≥0時(shí),偶函數(shù)y=f(x)的圖象如圖所示,則不等式f(3x-5)<0的解集為( 。
A.(-1,0)∪(1,2)B.(log37,2)C.(0,2)D.(0,1)∪(log37,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=x2-2ax-3
(1)若函數(shù)在f(x)的單調(diào)遞減區(qū)間(-∞,2],求函數(shù)f(x)在區(qū)間[3,5]上的最大值.
(2)若函數(shù)在f(x)在單區(qū)間(-∞,2]上是單調(diào)遞減,求函數(shù)f(1)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.下列命題中正確的是( 。
A.任意兩個(gè)復(fù)數(shù)均不能比較大小
B.復(fù)數(shù)z為實(shí)數(shù)的充要條件是$z=\overline z$
C.復(fù)數(shù)z=3+2i在復(fù)平面上對(duì)應(yīng)的點(diǎn)在第二象限
D.復(fù)數(shù)i+3的共軛復(fù)數(shù)為i-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知雙曲線$\frac{x^2}{a^2}-{y^2}=1,(a>0)$的漸近線方程為$y=±\frac{{\sqrt{3}}}{3}x$,則其焦距為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)f0(x)=cosx,${f_1}(x)=f_0^'(x)$,${f_2}(x)=f_1^'(x)$,…${f_{n+1}}(x)=f_n^'(x)$,n∈N,則f2011(x)等于( 。
A.sinxB.-sinxC.cosxD.-cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知函數(shù)f(x)=asin3x+bx3+4(a∈R,b∈R),f′(x)為f(x)的導(dǎo)函數(shù),則f(2014)+f(-2014)+f′(2015)-f′(-2015)=8.

查看答案和解析>>

同步練習(xí)冊(cè)答案