11.已知函數(shù)f(x)=x2-2ax-3
(1)若函數(shù)在f(x)的單調(diào)遞減區(qū)間(-∞,2],求函數(shù)f(x)在區(qū)間[3,5]上的最大值.
(2)若函數(shù)在f(x)在單區(qū)間(-∞,2]上是單調(diào)遞減,求函數(shù)f(1)的最大值.

分析 (1)由函數(shù)f(x)的單調(diào)遞減區(qū)間(-∞,2],可得a=2,可得函數(shù)f(x)在區(qū)間[3,5]上單調(diào)遞增,即可得出.
(2)由函數(shù)在f(x)在區(qū)間(-∞,2]上是單調(diào)遞減,得a≥2,即可得出.

解答 解:(1)由函數(shù)f(x)的單調(diào)遞減區(qū)間(-∞,2],
∴a=2;
∴f(x)=(x-2)2-7,
∴函數(shù)f(x)在區(qū)間[3,5]上單調(diào)遞增,
∴f(x)的最大值在x=5處取到,f(5)=32-7=2.
(2)由函數(shù)在f(x)在區(qū)間(-∞,2]上是單調(diào)遞減,得a≥2,
∴f(1)=-2-2a≤-6.
∴函數(shù)f(1)的最大值為-6.

點(diǎn)評 本題考查了二次函數(shù)的單調(diào)性、配方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知數(shù)列{xn}的首項(xiàng)x1=3,通項(xiàng)xn=2np+nq,(n∈N,p,q為常數(shù)),且x1,x4,x5成等差數(shù)列,則p之值為(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知:cosα+sinα=$\frac{2}{3}$,則$\frac{\sqrt{2}sin(2α-\frac{π}{4})+1}{1+tanα}$的值為-$\frac{5}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.(x2-x+1)5的展開式中,x3的系數(shù)為( 。
A.-30B.-24C.-20D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知復(fù)數(shù)Z滿足(1-i)z=1+i,則復(fù)數(shù)|Z|=( 。
A.$\sqrt{2}$B.1C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.求函數(shù)f(x)=ln(x2-2x-3)的定義域及單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知圓M的方程為x2+y2-2x-2y-6=0,以坐標(biāo)原點(diǎn)O為圓心的圓O與圓M相切.
(1)求圓O的方程;
(2)圓O與x軸交于E,F(xiàn)兩點(diǎn),圓O內(nèi)的動(dòng)點(diǎn)D使得|DE|,|DO|,|DF|成等比數(shù)列,求$\overrightarrow{DE}$•$\overrightarrow{DF}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.曲線$f(x)=\frac{cosx}{2+sinx}$在x=0處的切線方程為( 。
A.$y=-\frac{1}{4}x+\frac{1}{2}$B.$y=-\frac{1}{4}x$C.$y=\frac{1}{4}x+\frac{1}{2}$D.$y=\frac{1}{4}x$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.平面四邊形ABCD中,$∠A={90°},∠B=∠D={60°},AB=\sqrt{3},CD=1$,則AD=( 。
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

同步練習(xí)冊答案