19.甲、乙、丙、丁和戊5 名學(xué)生進行勞動技術(shù)比賽,決出第一名到第5 名的名次.若甲乙都沒有得到冠軍,并且乙不是最差的,5 個人的名次排名可能有多少種不同的情況?

分析 甲、乙不是第一名且乙不是最后一名.乙的限制最多,故先排乙,有3種情況;再排甲,也有3種情況;余下的問題是三個元素在三個位置全排列,根據(jù)分步計數(shù)原理得到結(jié)果.

解答 解:由題意,甲、乙都不是第一名且乙不是最后一名.乙的限制最多,故先排乙,有3種情況;
再排甲,也有3種情況;
余下3人有A33種排法.
故共有3•3•A33=54種不同的情況.

點評 本題主要考查排列、組合與簡單的計數(shù)問題,解決此類問題的關(guān)鍵是弄清完成一件事,是分類完成還是分步完成,是有順序還是沒有順序,像這種特殊元素與特殊位置的要優(yōu)先考慮.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.語文成績服從正態(tài)分布N(100,17.52),數(shù)學(xué)成績的頻率分布直方圖如圖:
(1)如果成績大于135的為特別優(yōu)秀,這500名學(xué)生中本次考試語文、數(shù)學(xué)特別優(yōu)秀的大約各多少人?
(2)如果語文和數(shù)學(xué)兩科都特別優(yōu)秀的共有6人,從(1)中的這些同學(xué)中隨機抽取3人,設(shè)三人中兩科都特別優(yōu)秀的有x人,求x的分布列和數(shù)學(xué)期望.
(3)根據(jù)以上數(shù)據(jù),是否有99%的把握認為語文特別優(yōu)秀的同學(xué),數(shù)學(xué)也特別優(yōu)秀.
①若x~N(μ,σ2),則P(μ-σ<x≤μ+σ)=0.68,P(μ-2σ<x≤μ+2σ)=0.96.
②k2=$\frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$;

P(k2≥k00.500.400.0100.0050.001
k00.4550.7086.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.平面內(nèi)給定三個向量$\overrightarrow a$=(3,2),$\overrightarrow b$=(-1,2),$\overrightarrow c$=(4,1)
(Ⅰ)求滿足$\overrightarrow a=m\overrightarrow b+n\overrightarrow c$的實數(shù)m,n;
(Ⅱ)若($\overrightarrow a+k\overrightarrow c)$∥(2$\overrightarrow b-\overrightarrow a)$,求實數(shù)k;
(Ⅲ)若$\overrightarrow d$滿足($\overrightarrow d$-$\overrightarrow c$)⊥($\overrightarrow a$+$\overrightarrow b$),且|$\overrightarrow d$|=2$\sqrt{2}$,求$\overrightarrow d$的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}是首項為1,公差不為0的等差數(shù)列,且a1,a2,a4成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,Sn是數(shù)列{bn}的前n項和,求證:Sn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知數(shù)列{an}滿足log2an+1=log2an+1(n∈N+),且a2+a4+a6=4,則a5+a7+a9的值是( 。
A.32B.$\frac{1}{2}$C.8D.-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,在x=0處的切線與直線3x+y=0平行.
(1)求f(x)的解析式;
(2)已知點A(2,m),求過點A的曲線y=f(x)的切線條數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知a>0,設(shè)函數(shù)f(x)=$\frac{1}{2}$x2+2ax,g(x)=3a2lnx.
(1)當a=e時,函數(shù)h(x)=f(x)-g(x)在[1,t]內(nèi)無極值,求t的范圍;
(2)若函數(shù)y=f(x)和y=g(x)的圖象在某點處有相同的切線y=kx+b,試證明f(x)≥kx+b對于任意的正實數(shù)x都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在△ABC中,若a=1,c=2,B=60°,則邊b等于( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\sqrt{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.等差數(shù)列0,2,4,6,8,10,…按如下方法分組:(0),(2,4),(6,8,10),(12,14,16,18),…則第n組中n個數(shù)的和是( 。
A.$\frac{n(2{n}^{2}-n-1)}{2}$B.n(n2-1)C.n3-1D.$\frac{n({n}^{2}-1)}{2}$

查看答案和解析>>

同步練習(xí)冊答案