分析 設二面角α-AB-β的大小為θ,由已知得:${\overrightarrow{CD}}^{2}$=${(\overrightarrow{CA}+\overrightarrow{AB}+\overrightarrow{BD})}^{2}$,利用向量數(shù)量積的應用進行求解,由此能求出二面角α-AB-β的大。
解答 解:設二面角α-AB-β的大小為θ,
則$\overrightarrow{CD}$=$\overrightarrow{CA}$+$\overrightarrow{AB}$+$\overrightarrow{BD}$,且<$\overrightarrow{AC}$,$\overrightarrow{BD}$>=θ,$\overrightarrow{CA}$•$\overrightarrow{AB}$=0,$\overrightarrow{AB}$•$\overrightarrow{BD}$=0,
平方得:${\overrightarrow{CD}}^{2}$=${(\overrightarrow{CA}+\overrightarrow{AB}+\overrightarrow{BD})}^{2}$=$\overrightarrow{CA}$2+$\overrightarrow{AB}$2+$\overrightarrow{BD}$2+2$\overrightarrow{CA}$•$\overrightarrow{BD}$=4+16+4-2×4×2cosθ=16,
解得cosθ=$\frac{1}{2}$.則θ=$\frac{π}{3}$
故答案為:$\frac{π}{3}$.
點評 本題考查二面角的余弦值的求法,利用向量法結合向量數(shù)量積的應用是解決本題的關鍵.解題時要認真審題,注意向量法的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | ln2 | D. | $\sqrt{2}$ln2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 2 | C. | 3 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{4\sqrt{2}π}{3}$ | B. | 2$\sqrt{2}$π | C. | $\frac{8\sqrt{2}π}{3}$ | D. | 4$\sqrt{2}$π |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com