9.若某產(chǎn)品的直徑長與標(biāo)準(zhǔn)值的差的絕對值不超過1mm時,則視為合格品,否則視為不合格品,在近期一次產(chǎn)品抽樣檢查中,從某廠生產(chǎn)的此種產(chǎn)品中,隨機抽取5000件進行檢測,結(jié)果發(fā)現(xiàn)有50件不合格品.計算這50件不合格品的直徑長與標(biāo)準(zhǔn)值的差(單位:mm),將所得數(shù)據(jù)分組,得到如表頻率分布表:
分組頻數(shù)頻率
[-3,-2)50.10
[-2,-1)80.16
(1,2]a0.50
(2,3]10b
(3,4]c0.04
合計501.00
(1)寫出如表表格中缺少的數(shù)據(jù)a,b,c的值:a=25,b=0.2,c=2.
(2)估計該廠生產(chǎn)的此種產(chǎn)品中,不合格品的直徑長與標(biāo)準(zhǔn)值的差落在區(qū)間(1,3]內(nèi)的頻率;
(3)現(xiàn)對該廠這種產(chǎn)品的某個批次進行檢查,結(jié)果發(fā)現(xiàn)有20件不合格品.據(jù)此估算這批產(chǎn)品中的合格品的件數(shù).

分析 (1)由頻率=$\frac{頻數(shù)}{總數(shù)}$,能求出a,b,c.
(2)由頻率分布表,能求出不合格品的直徑長與標(biāo)準(zhǔn)值的差落在區(qū)間(1,3]內(nèi)的頻率.
(3)對該廠這種產(chǎn)品的某個批次進行檢查,結(jié)果發(fā)現(xiàn)有20件不合格品,能求出能求出這批產(chǎn)品總件數(shù),從而能估算這批產(chǎn)品中的合格品的件數(shù).

解答 解:(1)∵直徑長與標(biāo)準(zhǔn)值的差在[-3,-2]內(nèi)的頻數(shù)為5,頻率為0.10,
∴$\frac{a}{50}=0.5$,$\frac{10}{50}$=b,$\frac{c}{50}$=0.04,
解得a=25,b=0.2,c=2.
故答案為:25,0.2,2.
(2)由頻率分布表,得:
不合格品的直徑長與標(biāo)準(zhǔn)值的差落在區(qū)間(1,3]內(nèi)的頻率為:
0.50+b=0.50+0.2=0.7.
(3)對該廠這種產(chǎn)品的某個批次進行檢查,結(jié)果發(fā)現(xiàn)有20件不合格品,
∴這批產(chǎn)品總件數(shù)n=$20÷\frac{50}{5000}$=2000,
估算這批產(chǎn)品中的合格品的件數(shù)m=2000×$\frac{5000-50}{5000}$=1980.

點評 本題考查頻率分布表的應(yīng)用,考查頻率的求法,考查合格品件數(shù)的求法,是基礎(chǔ)題,解題時要認真審題,注意頻率=$\frac{頻數(shù)}{總數(shù)}$的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.證明:$\sqrt{1}$+$\sqrt{2}$+$\sqrt{3}$+…+$\sqrt{n}$<$\frac{2}{3}$[(n+1)$\sqrt{n+1}$-1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.某幾何體的三視圖如圖所示,其俯視圖是由一個半圓與其直徑組成的圖形,則此幾何體的體積是$\frac{10π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)x,y,z是正實數(shù),滿足2y+z≥x,則$\frac{y}{z}$+$\frac{z}{x+2y}$的最小值為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某街心花園有許多鋼球(鋼的密度為7.9g/cm3),每個鋼球重145kg,并且外徑等于50cm,試根據(jù)以上數(shù)據(jù),判斷鋼球是空心的還是實心的,如果是空心的,請你計算出它的內(nèi)徑(π取3.14,結(jié)果精確到1cm,2.243≈11.24098).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知正實數(shù)x,y滿足x+2y=1,則$\frac{y}{2x}$+$\frac{1}{y}$的最小值為2+$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)f(x)=$\sqrt{{x^2}+2x-3}$的遞減區(qū)間是(-∞,-3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)△ABC的內(nèi)角A,B,C對邊分別為a,b,c,已知A=60°,a=$\sqrt{3}$,sinB+sinC=6$\sqrt{2}$sinBsinC,則△ABC的面積為$\frac{\sqrt{3}}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.2015年10月青島大排檔宰客一只大蝦賣38元,被網(wǎng)友稱為“天價大蝦”,為了弄清楚大蝦的實際情況,記者調(diào)查了青島市45家蝦類養(yǎng)殖戶,發(fā)現(xiàn)主要使用兩種飼料豆粕、海藻粉,數(shù)據(jù)如表:
使用豆粕未使用豆粕
使用海藻粉85
未使用海藻粉230
(1)從45家蝦類養(yǎng)殖戶中隨機選1戶,求該養(yǎng)殖戶至少使用豆粕、海藻粉一種的概率.
(2)在既使用豆粕又使用海藻粉的8戶養(yǎng)殖戶中,有5戶大型養(yǎng)殖戶A1,A2,A3,A4,A5,3戶中型養(yǎng)殖戶B1,B2,B3.現(xiàn)從這5戶大型養(yǎng)殖戶和3戶中型養(yǎng)殖戶中各隨機選1戶,求A1被選中且B1未被選中的概率.

查看答案和解析>>

同步練習(xí)冊答案