6.已知$\overrightarrow{AP}$=$\frac{3}{4}$$\overrightarrow{PB}$,若$\overrightarrow{BA}$=λ$\overrightarrow{AP}$,則λ的值為( 。
A.$\frac{3}{4}$B.$\frac{7}{3}$C.-$\frac{7}{3}$D.-$\frac{3}{4}$.

分析 根據(jù)向量加法的幾何意義,$\overrightarrow{AP}$=$\frac{3}{4}$$\overrightarrow{PB}$,可得:$\frac{3}{7}\overrightarrow{AB}=\overrightarrow{AP}$,$\overrightarrow{AB}=-\overrightarrow{BA}$,即可得到答案.

解答 解:根據(jù)向量加法的幾何意義,$\overrightarrow{AP}$=$\frac{3}{4}$$\overrightarrow{PB}$,可得:$\frac{3}{7}\overrightarrow{AB}=\overrightarrow{AP}$,
∵$\overrightarrow{AB}=-\overrightarrow{BA}$,
∴$-\frac{3}{7}\overrightarrow{BA}=\overrightarrow{AP}$
⇒$\overrightarrow{BA}=-\frac{7}{3}\overrightarrow{AP}$
所以:故而λ=$-\frac{7}{3}$
故選:C.

點評 考查向量加法及數(shù)乘的幾何意義,以及向量的數(shù)乘運算,平面向量基本定理.屬于基礎(chǔ)題

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

16.(1)等差數(shù)列{an}中,a8=6,a10=0,求{an}的通項公式an及前n項和Sn,并指出Sn取得最大值時n的值;
(2)等比數(shù)列{an}中,${a_1}=\frac{1}{2}$,a4=4,求數(shù)列{an}的通項公式an及前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.一場晚會有3個唱歌節(jié)目和2個舞蹈節(jié)目,要求排出一個節(jié)目單.(用數(shù)字作答)
(1)前3個節(jié)目中要有舞蹈,有多少種排法?
(2)2個舞蹈節(jié)目要排在一起,有多少種排法?
(3)2個舞蹈節(jié)目彼此要隔開,有多少種排法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.給定兩個向量$\overrightarrow a$=(3,4),$\overrightarrow b$=(2,-1),且($\overrightarrow{a}$+m$\overrightarrow$)⊥($\overrightarrow{a}$-$\overrightarrow$),則實數(shù)m=$\frac{23}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知向量$\overrightarrow{e_1}$,$\overrightarrow{e_2}$是平面內(nèi)不共線的兩個向量,$\overrightarrow a$=2$\overrightarrow{e_1}$-3$\overrightarrow{e_2}$,$\overrightarrow b$=λ$\overrightarrow{e_1}$+6$\overrightarrow{e_2}$,若向量$\overrightarrow a$、$\overrightarrow b$共線,則λ=-4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.銳角三角形中,a=2bsinA.
①求角Β的大小;
②若a=3$\sqrt{3}$,c=5,求邊b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.(1)若x>0,y>0,且$\frac{2}{x}$+$\frac{8}{y}$=1,求xy的最小值.
(2)已知x>0,y>0,滿足x+2y=1,求$\frac{1}{x}+\frac{1}{y}$的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知a=2${\;}^{\frac{4}{3}}$,b=4${\;}^{\frac{2}{5}}$,c=25${\;}^{\frac{1}{3}}$,則a,b,c的大小關(guān)系為c>a>b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{1}{3}{x^3}$-4x+4.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)求 函數(shù)f(x)閉區(qū)間[-2,m]上的最小值.

查看答案和解析>>

同步練習冊答案