13.函數(shù)f(x)=cosx,則f′($\frac{π}{6}$)=-$\frac{1}{2}$.

分析 求函數(shù)的導(dǎo)數(shù),根據(jù)函數(shù)的導(dǎo)數(shù)公式代入直接進(jìn)行計(jì)算即可.

解答 解:∵f(x)=cosx,
∴f′(x)=-sinx,f′($\frac{π}{6}$)=-sin $\frac{π}{6}$=-$\frac{1}{2}$,
故答案為:-$\frac{1}{2}$

點(diǎn)評(píng) 本題主要考查函數(shù)的導(dǎo)數(shù)的計(jì)算,要求熟練掌握掌握常見(jiàn)函數(shù)的導(dǎo)數(shù)公式,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,在三棱錐P-ABC中,平面PAC⊥平面ABC,PA⊥PC,AB=BC,點(diǎn)M,N分別為PC,AC的中點(diǎn).求證:
(1)直線PA∥平面BMN;
(2)平面PBC⊥平面BMN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知0<x<8,則(8-x)x的最大值是16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知函數(shù)f(x)=ex+ax-2,其中a∈R,若對(duì)于任意的x1,x2∈[1,+∞),且x1<x2,都有x2•f(x1)-x1•f(x2)<a(x1-x2)成立,則a的取值范圍是(  )
A.[1,+∞)B.[2,+∞)C.(-∞,1]D.(-∞,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知集合A={x∈R|0<x<1},B={x∈R|x•(2x-1)>0},則A∩B=( 。
A.{x∈R|0<x<$\frac{1}{2}$}B.{x∈R|$\frac{1}{2}$<x<1}C.{x∈R|0<x<1}D.{x∈R|x≠0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.某縣農(nóng)民的月收入ξ服從正態(tài)分布N(1000,402),則此縣農(nóng)民中月收入在1000元到1080元間的人數(shù)的百分比為47.72%.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=xlnx+(2a-1)x-ax2-a+1,
(1)若$a=\frac{1}{2}$,求f(x)的單調(diào)區(qū)間;
(2)若x∈[1,+∞)時(shí)恒有f(x)≤0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖是調(diào)查某地區(qū)男女中學(xué)生是否喜歡理科的等高條形圖,從如圖可以看出該地區(qū)的中學(xué)生( 。
A.性別與是否喜歡理科無(wú)關(guān)B.女生中喜歡理科的比為80%
C.男生比女生喜歡理科的可能性大D.男生中喜歡理科的比例為80%

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知正四棱錐的底面邊長(zhǎng)是3,高為$\frac{{\sqrt{17}}}{2}$,這個(gè)正四棱錐的側(cè)面積是$3\sqrt{26}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案