8.已知$\frac{1+tan(θ+720°)}{1-tan(θ-360°)}$=3+2$\sqrt{2}$,求:[cos2(π-θ)+sin(π+θ)•cos(π-θ)+2sin2(θ-π)]•$\frac{1}{co{s}^{2}(-θ-2π)}$的值.

分析 由已知等式求得tanθ=$\frac{\sqrt{2}}{2}$,再把要求的式子利用誘導(dǎo)公式化為1+tan θ+2tan2 θ,運(yùn)算求得結(jié)果.

解答 解:由$\frac{1+tan(θ+720°)}{1-tan(θ-360°)}$=3+2$\sqrt{2}$,
可得(4+2$\sqrt{2}$)tan θ=2+2$\sqrt{2}$,
所以tan θ=$\frac{2+2\sqrt{2}}{4+2\sqrt{2}}$=$\frac{\sqrt{2}}{2}$.
故[cos2(π-θ)+sin(π+θ)•cos(π-θ)+2sin2(θ-π)]•$\frac{1}{co{s}^{2}(-θ-2π)}$
=[cos2 θ+sin θcos θ+2sin2 θ]•$\frac{1}{co{s}^{2}θ}$ 
=1+tan θ+2tan2 θ
=1+$\frac{\sqrt{2}}{2}$+1
=2+$\frac{\sqrt{2}}{2}$.

點(diǎn)評(píng) 本題主要考查利用誘導(dǎo)公式進(jìn)行化簡(jiǎn)求值,求得tanθ=$\frac{\sqrt{2}}{2}$是解題的關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{log_2}x,(x>0)\\{2^{-x}},(x≤0)\end{array}$,則不等式f(x)>1的解集為(  )
A.(2,+∞)B.(-∞,0)C.(-∞,0)∪(2,+∞)D.(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若函數(shù)f(x)=2lnx-ax在區(qū)間[2,+∞)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是( 。
A.[0,+∞)B.(-∞,0]C.(-∞,1]D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下列說(shuō)法正確的是(m,a,b∈R)(  )
A.am>bm,則a>bB.a>b,則am>bmC.am2>bm2,則a>bD.a>b,則am2>bm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.有一排標(biāo)號(hào)為A、B、C、D、E、F的6個(gè)座位,請(qǐng)2個(gè)家庭共6人入座,要求每個(gè)家庭的任何兩個(gè)人不坐在一起,則不同的入座方法的總數(shù)為72.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)a,b∈R,且a>0函數(shù)f(x)=x2-ax+2b,g(x)=ax+b,在[-1,1]上g(x)的最小值為2,則f(2)等于( 。
A.-4B.0C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若函數(shù)f(x)=|sinx+$\frac{2}{3+sinx}$+t|(x,t∈R),對(duì)于任意的t∈R均存在x0使得f(x0)≥m,則m的最大值是(  )
A.$\frac{3}{4}$B.2$\sqrt{2}$-3C.2$\sqrt{2}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若實(shí)數(shù)x,y滿(mǎn)足不等式$\left\{\begin{array}{l}{y≥x}\\{x+y≥4}\\{x-3y+12≥0}\end{array}\right.$,則①2x-y的最大值是6;②$\sqrt{{x}^{2}+(y-1)^{2}}$最小值是$\frac{{3\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知關(guān)于x的方程x2-2xcosA•cosB+(1-cosC)=0的兩根之和等于兩根之積,則△ABC一定是( 。
A.直角三角形B.鈍角三角形C.等腰三角形D.等邊三角形

查看答案和解析>>

同步練習(xí)冊(cè)答案