8.命題p:?x>0,x2>0的否定是¬p:?x>0,x2≤0.

分析 直接利用特稱命題的否定是全稱命題寫出結(jié)果即可.

解答 解:因為特稱命題的否定是全稱命題,所以,命題p:?x>0,x2>0的否定是¬p:?x>0,x2≤0.
故答案為:?x>0,x2≤0.

點評 本題考查命題的否定,全稱命題與特稱命題的否定關(guān)系,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

1.圓的極坐標方程為ρ=2cos(θ+$\frac{π}{3}$),圓的直角坐標方程為${x^2}+{y^2}-x+\sqrt{3}y=0$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.解關(guān)于x的不等式|x-1|+|2-x|>3+x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.小于2的自然數(shù)集用列舉法可以表示為( 。
A.{0,1,2}B.{1}C.{0,1}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知函數(shù)f(x)=4x-m•2x+1+m2-3,且存在實數(shù)x,使f(-x)=-f(x),則實數(shù)m的取值范圍是$[1-\sqrt{3},2\sqrt{2}]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.公比為$-\frac{1}{2}$的等比數(shù)列{an}的前6項和S6=21,則2a1+a6=63.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.函數(shù)$f(x)=\left\{\begin{array}{l}|{l}o{g_{\frac{1}{2}}}x|,0<x≤4\\|6-x|,x>4\end{array}\right.$存在a<b<c<d,使f(a)=f(b)=f(c)=f(d),則$\frac{c+d}{2ab}$的值為(  )
A.1B.3
C.6D.與a,b,c,d的值有關(guān)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知$f(x)=sin(\frac{x}{2}+\frac{π}{6})$的對稱軸為x=2kπ+$\frac{2π}{3}$,k∈Z.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在數(shù)列{an}中,a1=2,an+1=$2(1+\frac{1}{n}){a_n}$,n∈N*.
(1)求證:$\{\frac{a_n}{n}\}$是等比數(shù)列;
(2)求數(shù)列{an}的前n項之和Sn

查看答案和解析>>

同步練習冊答案