13.在銳角△ABC中,b=$\sqrt{3}$,c=3,B=30°,則a等于$2\sqrt{3}$.

分析 利用余弦定理可得a,進(jìn)而得出.

解答 解:由余弦定理可得:b2=a2+c2-2accosB,
∴$(\sqrt{3})^{2}$=a2+32-6acos30°,
化為:a2-3$\sqrt{3}$a+6=0,
解得a=2$\sqrt{3}$或$\sqrt{3}$.
當(dāng)a=$\sqrt{3}$時(shí),C=180°-2×30°=120°,不滿足條件,舍去.
∴$a=2\sqrt{3}$.
故答案為:2$\sqrt{3}$.

點(diǎn)評 本題考查了余弦定理,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.復(fù)數(shù)$\frac{5}{2+i}$的共軛復(fù)數(shù)是( 。
A.-$\frac{5}{3}-\frac{10}{3}$iB.-$\frac{5}{3}+\frac{10}{3}i$C.2+iD.2-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.直線ax+by+c=0與圓x2+y2=16相交于兩點(diǎn)M、N,若c2=a2+b2,則$\overrightarrow{OM}•\overrightarrow{ON}$(O為坐標(biāo)原點(diǎn))等于( 。
A.-7B.-14C.7D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)不等式組$\left\{\begin{array}{l}x>0\\ y>0\\ y≤-nx+3n\end{array}$所表示的平面區(qū)域?yàn)镈n,記Dn內(nèi)的整點(diǎn)個(gè)數(shù)為an(n∈N*),(整點(diǎn)即橫、縱坐標(biāo)均為整數(shù)的點(diǎn)).
(1)計(jì)算a1,a2,a3的值;
(2)求數(shù)列{an}的通項(xiàng)公式an;
(3)記數(shù)列{an}的前n項(xiàng)和為Sn,且Tn=$\frac{S_n}{{3•{2^{n-1}}}}$,若對于一切的正整數(shù)n,總有Tn≤m,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知四面體ABCD,平面ABD⊥平面ABC,AB=5,BC=3,AC=4,DC與平面ABC所成角為$\frac{π}{4}$,則四面體ABCD的體積的最小值為( 。
A.$\frac{12}{5}$B.$\frac{24}{5}$C.$\frac{8}{5}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)f(x)是連續(xù)的偶函數(shù),且當(dāng)x>0時(shí),f(x)是單調(diào)函數(shù),則滿足f(x)=f($\frac{x+2015}{x+2016}$)的所有x之和為( 。
A.-4031B.-4032C.-4033D.-4034

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知M是△ABC內(nèi)的一點(diǎn),且$\overrightarrow{AB}$•$\overrightarrow{AC}$=4$\sqrt{3}$,∠BAC=30°,若△MBC,△MCA和△MAB的面積分別為1,x,y,則 $\frac{y+4x}{xy}$的最小值是( 。
A.20B.18C.16D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)a>b>0,c∈R,則下列不等式恒成立的是( 。
A.a|c|>b|c|B.ac2>bc2C.a2c>b2cD.$\frac{1}{a}$<$\frac{1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若等差數(shù)列{an}滿足a7+a8+a9=3,則a7+a10=-1,則{an}的前n項(xiàng)和Sn的最大值為( 。
A.100B.92C.88D.72

查看答案和解析>>

同步練習(xí)冊答案