8.已知四面體ABCD,平面ABD⊥平面ABC,AB=5,BC=3,AC=4,DC與平面ABC所成角為$\frac{π}{4}$,則四面體ABCD的體積的最小值為( 。
A.$\frac{12}{5}$B.$\frac{24}{5}$C.$\frac{8}{5}$D.2

分析 設(shè)DE⊥AB,則DE⊥平面ABC,可得∠DCE是DC與平面ABC所成角,為$\frac{π}{4}$,從而DE=CE,四面體ABCD的體積最小時,DE最小,即CE最小,此時CE⊥AB,求出CE,即可求出四面體ABCD的體積的最小值.

解答 解:設(shè)DE⊥AB,則DE⊥平面ABC,
∴∠DCE是DC與平面ABC所成角,為$\frac{π}{4}$,
∴DE=CE,
四面體ABCD的體積最小時,DE最小,即CE最小,此時CE⊥AB.
∵AB=5,BC=3,AC=4,
∴BC2+AC2=AB2,
∴AC⊥BC,
∴由等面積可得CE=$\frac{12}{5}$,
∴四面體ABCD的體積的最小值為$\frac{1}{3}×\frac{1}{2}×3×4×\frac{12}{5}$=$\frac{24}{5}$.
故選:B.

點評 本題考查四面體ABCD的體積的最小值,考查線面角,考查平面與平面垂直的性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=x2-2x+2,x∈A,當(dāng)A為下列區(qū)間時,分別求f(x)的最大值和最小值.
(1)A=[-2,0];
(2)A=[2,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知集合M是滿足下列條件的函數(shù)f(x)的全體:存在非零常數(shù)T,對任意x∈R,有f(x+T)=Tf(x)成立.給出如下函數(shù):①f(x)=x;②f(x)=2x;③f(x)=$\frac{1}{2^x}$;④f(x)=x2;則屬于集合M的函數(shù)個數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.α的終邊過點P(-1,2),則sin(α+$\frac{π}{2}$)的值為( 。
A.$\frac{\sqrt{5}}{5}$B.-$\frac{\sqrt{5}}{5}$C.$\frac{2\sqrt{5}}{5}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,則a1+a2+a3+a4+a5=( 。
A.-1B.31C.-33D.-31

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在銳角△ABC中,b=$\sqrt{3}$,c=3,B=30°,則a等于$2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}的前n項和sn滿足Sn=2n2-13n(n∈N*).
(1)求通項公式an;
(2)令cn=$\frac{{a}_{n}}{{2}^{n}}$,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知a,b,c均為實數(shù),下面命題正確的是(  )
A.$\frac{a}$>c⇒a>bcB.ac2>bc2⇒a>bC.$\frac{a}{c^2}$>$\frac{c^2}$⇒3a<3bD.a>b⇒|c|a>|c|b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知等比數(shù)列{an},且a2+a4=3,則a3(a1+2a3+a5)的值為(  )
A.12B.4C.6D.9

查看答案和解析>>

同步練習(xí)冊答案