分析 根據“左加右減”原則表示出變換后的函數解析式,利用余弦函數圖象的對稱性,可得∴±$\frac{1}{2}$φ-$\frac{π}{3}$=kπ(k∈z),即可求出|φ|的最小值.
解答 解:將y=cos($\frac{1}{2}$x-$\frac{π}{3}$)的圖象平移φ個單位后,
得到的函數:y=cos[$\frac{1}{2}$(x±φ)-$\frac{π}{3}$]=cos($\frac{1}{2}$x±$\frac{1}{2}$φ-$\frac{π}{3}$),
∵所得圖象關于y軸對稱,
∴±$\frac{1}{2}$φ-$\frac{π}{3}$=kπ(k∈z),解得:±φ=2kπ+$\frac{2π}{3}$,k∈Z,
∴k=0時,|φ|的最小值$\frac{2π}{3}$.
故答案為:$\frac{2π}{3}$.
點評 本題主要考查函數y=Acos(ωx+φ)的圖象變換法原則:“左加右減,上加下減”,以及三角函數圖象的性質應用,注意左右平移時必須在x的基礎進行加減,這是易錯的地方.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 75° |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | a<b<c | B. | c<a<b | C. | b<a<c | D. | c<b<a |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com