3.已知A(2,3)B(-3,-2)若有直線l:kx-y+1-k=0,與線段AB相交,則k的取值范圍為(  )
A.k≥2或k≤$\frac{3}{4}$B.$\frac{3}{4}$≤k≤2C.k≥$\frac{3}{4}$D.k≤2

分析 求出直線過P(1,1),再分別求出AP和BP的斜率,由數(shù)形結(jié)合求出k的范圍即可.

解答 解:kx-y+1-k=0由,得y=k(x-1)+1,
∴直線過定點(diǎn)P(1,1),
又A(2,3),B(-3,-2),
而KAP=$\frac{3-1}{2-1}$=2,KBP=$\frac{-2-1}{-3-1}$=$\frac{3}{4}$,
故k的范圍是:(-∞,$\frac{3}{4}$]∪[2,+∞),
故選:A.

點(diǎn)評(píng) 本題考查了求直線的斜率問題,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知定義在R上的函數(shù)f(x)對(duì)于任意的x∈R都有f(x+4)=-$\frac{1}{f(x)}$,設(shè)an=f(n)(n∈N*),數(shù)列{an}中,不同的值至多有(  )個(gè).
A.12個(gè)B.8個(gè)C.6個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)不等式組$\left\{\begin{array}{l}{x+y-2≤0}\\{x≥0}\\{y≥0}\end{array}\right.$表示的平面區(qū)域?yàn)镈,在區(qū)域D內(nèi)隨機(jī)取一點(diǎn)P,則點(diǎn)P落在圓x2+y2=1內(nèi)的概率為$\frac{π}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=|x+1|+|mx-1|.
(1)若m=1,求f(x)的最小值,并指出此時(shí)x的取值范圍;
(2)若f(x)≥2x,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{2x+1}{{x}^{2}},x<-\frac{1}{2}}\\{x+1,x≥-\frac{1}{2}}\end{array}\right.$,g(x)=x2-4x-4,若存在實(shí)數(shù)a使得f(a)+g(b)=0,則實(shí)數(shù)b的取值范圍是[-1,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(1)已知一圓過P(4,-2),Q(-1,3)兩點(diǎn),且在y軸上截得的線段長(zhǎng)4$\sqrt{3}$的圓,求圓的方程;
(2)求圓心在直線x+y=0上,且過兩圓x2+y2-2x+10y-24=0與x2+y2+2x+2y-8=0的交點(diǎn)的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知一組數(shù)據(jù)x1,x2,…,xn的平均值為2,方差為1,則2x1+1,2x2+1,…,2xn+1平均值方差分別為( 。
A.5,4B.5,3C.3,5D.4,5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)f(x)=$\frac{1}{2x+1}$,x∈[1,4]的最小值是$\frac{1}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在△ABC中,A>B,則下列不等式正確的個(gè)數(shù)為( 。
①sinA>sinB ②cosA<cosB ③sin2A>sin2B ④cos2A<cos2B.
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案