7.已知函數(shù)f(x)=2sin(?x+φ)對(duì)任意x都有f(${\frac{π}{6}$+x)=f(${\frac{π}{6}$-x),則|f(${\frac{π}{6}}$)|=2.

分析 由條件可得,函數(shù)f(x)的圖象關(guān)于直線x=${\frac{π}{6}}$對(duì)稱,故f(${\frac{π}{6}}$)等于函數(shù)的最值,從而得出結(jié)論.

解答 解:由題意可得,函數(shù)f(x)的圖象關(guān)于直線x=${\frac{π}{6}}$對(duì)稱,故|f(${\frac{π}{6}}$)|=2,
故答案為:2

點(diǎn)評(píng) 本題主要考查正弦函數(shù)的圖象的對(duì)稱性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸為正半軸建立直角坐標(biāo)系,曲線M的方程為ρ2(3+cos2θ)=8.
(1)求曲線的直角坐標(biāo)方程
(2)若點(diǎn)A(0,m),B(n,0)在曲線M上,點(diǎn)F(0,-$\sqrt{{m^2}-{n^2}}}$),F(xiàn)P平行于x軸交曲線M于點(diǎn)P(x0,y0),其中m>0,n>0,x0>0,求證:PO∥BA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知等差數(shù)列{an}中,a7+a9=16,S11=66,則a12的值是12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.為了解某校身高在1.60m~1.78m的高一學(xué)生的情況,隨機(jī)地抽查了該校200名高一學(xué)生,得到如圖1所示頻率直方圖.由于不慎將部分?jǐn)?shù)據(jù)丟失,但知道前4組的頻數(shù)成等比數(shù)列,后6組的頻數(shù)成等差數(shù)列,設(shè)最大頻率為m,身高在1.66m~1.74m的學(xué)生數(shù)為n,則m,n的值分別為( 。
A.0.27,78B.0.27,156C.0.81,78D.0.09,83

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.計(jì)算:
(1)$\root{4}{(3-π)^{4}}$+(0.008)${\;}^{-\frac{1}{3}}$-(0.25)${\;}^{\frac{1}{2}}$×$(\frac{1}{\sqrt{2}})$-4
(2)若x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=$\sqrt{7}$,求$\frac{x+{x}^{-1}}{{x}^{2}+{x}^{-2}-3}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知實(shí)數(shù)a,b,c滿足a+b+c=0,a2+b2+c2=1,則a的取值范圍是-$\frac{\sqrt{6}}{3}$≤a≤$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知α為銳角,若sin2α+cos2α=-$\frac{1}{5}$,則tanα=( 。
A.3B.2C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)全集U={1,2,3,4,5},A∩B={1,2},(∁UA)∩B={3},A∩(∁UB)={5},則A∪B是(  )
A.{1,2,3}B.{1,2,5}C.{1,2,3,4}D.{1,2,3,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且滿足sinA+sinB=[cosA-cos(π-B)]sinC.
(1)判斷△ABC是否為直角三角形,并說(shuō)明理由;
(2)若a+b+c=1+$\sqrt{2}$,求△ABC面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案