如圖,三棱柱ABC-A1B1C1中,D是棱AA1的中點,平面BDC1分此棱柱為上下兩部分,則這上下兩部分體積的比為(  )
A、2:3B、1:1
C、3:2D、3:4
考點:棱柱、棱錐、棱臺的體積
專題:空間位置關(guān)系與距離
分析:利用特殊值法,設(shè)三棱柱ABC-A1B1C1是正三棱柱,AC=1,AA1=2,由此能求出平面BDC1分此棱柱兩部分體積的比.
解答: 解:設(shè)三棱柱ABC-A1B1C1是正三棱柱,
AC=1,AA1=2,棱錐B-DACC1的體積為V1,
由題意得V1=
1
3
×
1+2
2
×1×
3
2
=
3
4
,
又三棱柱ABC-A1B1C1的體積V=sh=
1
2
×1×1×sin60°×2
=
3
2
,
(V-V1):V1=1:1,
∴平面BDC1分此棱柱兩部分體積的比為1:1.
故選:B.
點評:本題考查平面BDC1分此棱柱兩部分體積的比的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,A={x|-
3
4
x2+x+1>0},B={x|3x2-4x+1>0},求∁U(A∩B).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2分別是雙曲線
x2
a2
-
y2
b2
=l(a>0,b>0)的左、右焦點,P為雙曲線上的一點,若∠F1PF2=90°,且△F1PF2的三邊長成等差數(shù)列.又一橢圓的中心在原點,焦點在x軸上,短軸的一個端點到其右焦點的距離為
3
,雙曲線與該橢圓離心率之積為
5
6
3

(1)求橢圓的方程;
(2)設(shè)直線l與橢圓交于A,B兩點,坐標原點O到直線l的距離為
3
2
,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)在(0,+∞)上單調(diào)遞增,且為偶函數(shù),則f(-π),f(-
1
3
),f(3)之間的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=(a2-2a)+(a2-a-2)2,對應(yīng)點在虛軸上,則復(fù)數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)中
b
a
=2,則離心率e=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某商場經(jīng)營一批進價是30元/臺的商品,在市場銷售中發(fā)現(xiàn)此商品的銷售單價x(x取整數(shù))元與日銷售量y件之間有如下關(guān)系:
銷售單價x(元)35404550
日銷售量y(件)56412811
(1)畫出散點圖,并判斷y與x是否具有線性相關(guān)關(guān)系?
(2)求日銷售量y對銷售單價x的線性回歸方程;
(3)設(shè)經(jīng)營此商品的日銷售利潤為P元,根據(jù)(1)寫出P關(guān)于x的函數(shù)關(guān)系式,并預(yù)測當銷售單價x為多少元時,才能獲得最大日銷售利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知一個幾何體的三視圖如圖.則該幾何體的表面積為( 。
A、6+2
5
+2
2
B、2+2
5
+2
2
C、6+2
5
+2
3
D、2+2
5
+2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)在(0,+∞)上可導(dǎo),且滿足f(x)>xf′(x),則一定有( 。
A、函數(shù)F(x)=
f(x)
x
在(0,+∞)上為增函數(shù)
B、函數(shù)F(x)=
f(x)
x
在(0,+∞)上為減函數(shù)
C、函數(shù)G(x)=xf(x)在(0,+∞)上為增函數(shù)
D、函數(shù)G(x)=xf(x)在(0,+∞)上為減函數(shù)

查看答案和解析>>

同步練習(xí)冊答案