【題目】祖暅(公元前5~6世紀)是我國齊梁時代的數(shù)學家,是祖沖之的兒子,他提出了一條原原理:“冪勢既同,則積不容異.”這里的“冪”指水平截面的面積,“勢”指高。這句話的意思是:兩個等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個幾何體體積相等。設由橢圓 所圍成的平面圖形繞 軸旋轉一周后,得一橄欖狀的幾何體(稱為橢球體),課本中介紹了應用祖暅原理求球體體積公式的做法,請類比此法,求出橢球體體積,其體積等于( )

A. B.

C. D.

【答案】A

【解析】

先構造兩個底面半徑為b,高為a的圓柱,然后在圓柱內(nèi)挖去一個以圓柱下底面圓心為頂點,圓柱上底面為底面的圓錐,根據(jù)祖暅原理得出橢球的體積。

解:橢圓的長半軸長為a,短半軸長為b,

先構造兩個底面半徑為b,高為a的圓柱,

然后在圓柱內(nèi)挖去一個以圓柱下底面圓心為頂點,圓柱上底面為底面的圓錐,

根據(jù)祖暅原理得出橢球的體積為,

故選A。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別是,且離心率為,點為橢圓上的動點,面積最大值為.

1)求橢圓的標準方程;

2是橢圓上的動點,且直線經(jīng)過定點,問在軸上是否存在定點,使得若存在,請求出定點,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,圓的參數(shù)方程為為參數(shù)),以為極點,軸的非負半軸為極軸建極坐標系,直線的極坐標方程為

(Ⅰ)求的極坐標方程;

(Ⅱ)射線與圓C的交點為與直線的交點為,求的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足,且.

(Ⅰ)求,的值;

(Ⅱ)是否存在實數(shù),使得,對任意正整數(shù)恒成立?若存在,求出實數(shù)、的值并證明你的結論;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知x,y,z∈(0,+∞),x+y+z=3.

(1)的最小值;

(2)證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)求該函數(shù)的值域;

2)若對于任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知方程恰有四個不同的實數(shù)根,當函數(shù)時,實數(shù)K的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年電子商務蓬勃發(fā)展,平臺對每次成功交易都有針對商品和快遞是否滿意的評價系統(tǒng).從該評價系統(tǒng)中選出200次成功交易,并對其評價進行統(tǒng)計,網(wǎng)購者對商品的滿意率為0.70,對快遞的滿意率為0.60,商品和快遞都滿意的交易為80

(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并回答能否有99%認為網(wǎng)購者對商品滿意與對快遞滿意之間有關系”?

對快遞滿意

對快遞不滿意

合計

對商品滿意

80

對商品不滿意

合計

200

(2)若將頻率視為概率,某人在該網(wǎng)購平臺上進行的3次購物中,設對商品和快遞都滿意的次數(shù)為隨機變量,求的分布列和數(shù)學期望E(x).

附:

0.050

0.010

0.001

K

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ABC中,a,b,c分別是三個內(nèi)角A,B,C的對邊,若a=2,C=cos,求ABC的面積S.

查看答案和解析>>

同步練習冊答案