18.已知定義在區(qū)間[a-1,2a+4]的偶函數(shù)f(x)=x2+(a-b)x+1,則不等式f(x)>f(b)的解集為( 。
A.[1,2]B.[-2,-1]C.(1,2]D.[-2,-1)∪(1,2]

分析 由偶函數(shù)定義域關于原點對稱可知a-1+2a+4=0可求a,結合f(x)=x2+(a-b)x+1為偶函數(shù)可求b,即可求解.

解答 解:由偶函數(shù)定義域關于原點對稱可知a-1+2a+4=0
∴a=-1,函數(shù)的定義域為[-2,2],
∵f(x)=x2+(a-b)x+1為偶函數(shù)
∴f(-x)=f(x),
∴x2-(a-b)x+1=x2+(a-b)x+1,
∴a-b=0,
∴b=-1,f(x)=x2+1
∵f(x)>f(b),
∴|x|>1,
∵函數(shù)的定義域為[-2,2],
∴不等式f(x)>f(b)的解集為[-2,-1)∪(1,2].
故選:D.

點評 本題主要考查了偶函數(shù)的定義域關于原點對稱及偶函數(shù)的定義的應用,屬于基礎試題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

8.在(1-x)11的展開式中系數(shù)最大的是第7項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知f(x)是R上的單調函數(shù),?x1,x2∈R,?x0∈R,總有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立.
(I)求x0的值;
(II) 若f(x0)=1,且?n∈N*,有an=f($\frac{1}{{{2^{n+1}}}}$)+1,若數(shù)列{an}的前n項和Sn,求證:Sn<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.(2-x)(1+x)5的展開式中x3的系數(shù)為(  )
A.-10B.10C.-15D.15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知樣本數(shù)據(jù)如表所示,若y與x線性相關,且回歸方程為$\widehaty=\widehatbx+\frac{13}{2}$,則$\widehatb$=$-\frac{1}{2}$.
x234
y645

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.運行如圖的程序框圖,輸出的第4個y是( 。
A.3B.-1C.0D.-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知數(shù)列{an}的前n項和為Sn,且Sn=ln(n+1).
(1)求數(shù)列{an}的通項公式;
(2)設bn=ean(e為自然對數(shù)的底數(shù)),定義:$\underset{\stackrel{n}{π}}{k=1}$bk=b1•b2•b3…bn,求$\underset{\stackrel{n}{π}}{k=1}$bk

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知△ABC為等邊三角形,在△ABC內隨機取一點P,則△BCP為鈍角三角形的概率為(  )
A.$\frac{1}{4}+\frac{{\sqrt{3}}}{18}π$B.$\frac{1}{2}+\frac{{\sqrt{3}}}{18}π$C.$\frac{3}{4}-\frac{{\sqrt{3}}}{18}π$D.$\frac{1}{2}-\frac{{\sqrt{3}}}{18}π$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,已知圓上的$\widehat{AC}$=$\widehat{BD}$,過C點的圓的切線與BA的延長線交于E點,設M是$\widehat{AC}$的中點,
(Ⅰ)證明:∠BCD=2∠ACM;
(Ⅱ)若CD=2,BC=4,求BE的長.

查看答案和解析>>

同步練習冊答案