分析 (Ⅰ)運用向量的數(shù)量積的坐標表示和二倍角的正弦,余弦公式,以及兩角差的正弦公式,運用特殊角的函數(shù)值,即可得到所求零點;
(Ⅱ)由題意可得$\frac{π}{3}$≤B<π,運用正弦函數(shù)的圖象和性質,可得f(B)的最值,即可得到所求范圍.
解答 解:(Ⅰ)向量$\overrightarrow{m}$=(cos$\frac{x}{2}$,-1),$\overrightarrow{n}$=($\sqrt{3}$sin$\frac{x}{2}$,cos2$\frac{x}{2}$),
可得函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$=$\sqrt{3}$sin$\frac{x}{2}$cos$\frac{x}{2}$-cos2$\frac{x}{2}$=$\frac{\sqrt{3}}{2}$sinx-$\frac{1+cosx}{2}$
=sin(x-$\frac{π}{6}$)-$\frac{1}{2}$,
由f(x)=0,可得sin(x-$\frac{π}{6}$)=$\frac{1}{2}$,
即x-$\frac{π}{6}$=2kπ+$\frac{π}{6}$或2kπ+$\frac{5π}{6}$,k∈Z,
即為x=2kπ+$\frac{π}{3}$或2kπ+π,k∈Z,
由x∈[0,π],可得f(x)的零點為$\frac{π}{3}$;
(Ⅱ)A=$\frac{π}{3}$,B是△ABC中的最大內角,
即為B≥$\frac{π}{3}$,B≥π-$\frac{π}{3}$-B,解得$\frac{π}{3}$≤B<π,
則f(B)=sin(B-$\frac{π}{6}$)-$\frac{1}{2}$,
由$\frac{π}{6}$≤B-$\frac{π}{6}$<$\frac{5π}{6}$,可得$\frac{1}{2}$≤sin(B-$\frac{π}{6}$)≤1,
即為0≤f(B)≤$\frac{1}{2}$,
則f(B)的取值范圍是[0,$\frac{1}{2}$].
點評 本題考查向量的數(shù)量積的坐標表示,以及二倍角公式和兩角差的正弦公式,考查正弦函數(shù)的圖象和性質,考查運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com