18.設Sn為數(shù)列{an}的前n項和,已知2an-2=Sn,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{nan}的前n項和.

分析 (Ⅰ)根據(jù)遞推公式即可求出{an}的通項公式,
(Ⅱ)利用“錯位相減法”與等比數(shù)列的前n項和公式即可得出.

解答 解:(Ⅰ)∵S1=a1
∴當n=1時,2a1-2=S1=a1,
∴a1=2,
當n≥2時,an=sn-sn-1=2an-2an-1,
∴an=2an-1
∴{an}的首項為a1=2,公比q=2的等比數(shù)列,
∴an=2n,n∈N*,
(Ⅱ)設Tn=1•a1+2•a2+3•a3+…+n•an,
∴Tn=1•21+2×22+3×23+…+n•2n
∴2Tn=1•22+2×23+3×24+…+(n-1)2n+n•2n+1,
∴-Tn=21+22+23+24+…+2n-n•2n+1=$\frac{2(1-{2}^{n})}{1-2}$-n•2n+1=2n+1-2-n•2n+1=-2+(1-n)2n+1
∴Tn=(n-1)2n+1+2,n∈N*

點評 本題考查了“錯位相減法”、等比數(shù)列的通項公式及其前n項和公式、遞推式的應用,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

8.定義域為R的偶函數(shù)f(x)滿足?x∈R,有f(x+2)=f(x)-f(1),且當x∈[2,3]時,f(x)=-2x2+12x-18,若函數(shù)y=f(x)-loga(x+1)至少有五個零點,則a的取值范圍是( 。
A.(0,$\frac{\sqrt{2}}{2}$)B.(0,$\frac{\sqrt{3}}{3}$)C.(0,$\frac{\sqrt{5}}{5}$)D.(0,$\frac{\sqrt{6}}{6}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知函數(shù)f(x)=sinx+x3,x∈R,若實數(shù)a,b滿足f(a-1)+f(b)=0,則a+b=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知函數(shù)f(x)=sinx+λcosx(λ∈R)的圖象關于x=-$\frac{π}{4}$對稱,則把函數(shù)f(x)的圖象上每個點的橫坐標擴大到原來的2倍,再向右平移$\frac{π}{3}$,得到函數(shù)g(x)的圖象,則函數(shù)g(x)的一條對稱軸方程為(  )
A.x=$\frac{π}{6}$B.x=$\frac{π}{4}$C.x=$\frac{π}{3}$D.x=$\frac{11π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.一個學校高一、高二、高三學生數(shù)之比為5:2:3,若用分層抽樣抽取容量為200的樣本,則應從高三學生中抽取的人數(shù)是( 。
A.20B.40C.60D.80

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.現(xiàn)將4個“優(yōu)秀班級”名額和1個“優(yōu)秀團支部”名額分給4個班級,每個班級至少獲得1個名額,則不同分法有(  )種.
A.24B.28C.32D.16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.四棱錐M-ABCD的底面ABCD是邊長為6的正方形,若|MA|+|MB|=10,則三棱錐A-BCM的體積的最大值是24.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知:函數(shù)f(x)=cos(2x+φ),(-π≤φ<π)的圖象向右平移$\frac{π}{2}$個單位后與函數(shù)y=sinxcosx+$\frac{{\sqrt{3}}}{2}$cos2x的圖象重合,則|φ|可以為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知集合A={x|log2(x+1)<2},B={x|(x-1)(x-3)=0},則A∪B等于( 。
A.(-1,3)B.(-1,3]C.(1,3)D.(1,3]

查看答案和解析>>

同步練習冊答案