3.已知{an}是等差數(shù)列,且a4+4是a2+2和a6+6的等比中項,則{an}的公差d=( 。
A.1B.-1C.2D.-2

分析 a4+4是a2+2和a6+6的等比中項,可得:$({a}_{4}+4)^{2}$=(a2+2)(a6+6),化為$({a}_{4}+4)^{2}$=(a4-2d+2)(a4+2d+6),解出d即可.

解答 解:∵a4+4是a2+2和a6+6的等比中項,
∴$({a}_{4}+4)^{2}$=(a2+2)(a6+6),
∴$({a}_{4}+4)^{2}$=(a4-2d+2)(a4+2d+6),
化為(d+1)2=0,解得d=-1.
故選:B.

點(diǎn)評 本題考查了等差數(shù)列與等比數(shù)列的通項公式及其性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列四組函數(shù)中,有相同圖象的一組是( 。
A.f(x)=x,$g(x)=\sqrt{x{\;}^2}$B.f(x)=x,$g(x)=\root{3}{x^3}$
C.f(x)=sinx,g(x)=sin(π+x)D.f(x)=x,g(x)=elnx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.應(yīng)用反證法推出矛盾的推理過程中可作為條件使用的是①結(jié)論的否定②已知條件③公理、定理、定義等④原結(jié)論( 。
A.①②B.②③C.①②③D.①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知x∈(0,$\frac{π}{2}$),求證:sinx<x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖所示(單位:cm),圖中陰影部分繞AB旋轉(zhuǎn)一周所形成的幾何體的體積為$\frac{140}{3}π$cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列結(jié)論中正確的個數(shù)有(  )
①冪函數(shù)圖象一定過原點(diǎn)
②當(dāng)α<0時,冪函數(shù)是減函數(shù)
③當(dāng)α>0時,冪函數(shù)是增函數(shù)
④函數(shù)y=2x2即是二次函數(shù),又是冪函數(shù).
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.以原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(${θ-\frac{π}{4}}$)=5+$\sqrt{2}$.曲線C的參數(shù)方程為$\left\{{\begin{array}{l}{x=2+2cosα}\\{y=2sinα}\end{array}}$(α為參數(shù)).
(1)寫出直線l的直角坐標(biāo)方程以及曲線C的普通方程;
(2)若點(diǎn)A在曲線C上,$B({5\sqrt{2}+\frac{{\sqrt{2}}}{2}t,2-\frac{{\sqrt{2}}}{2}t})$(t為參數(shù)),求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.曲線f(x)=-x2在點(diǎn)(1,-1)處的切線方程為( 。
A.y=x-2B.y=-3x+2C.y=2x-3D.y=-2x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知直線l:y=k(x+1)-$\sqrt{3}$與圓x2+y2=(2$\sqrt{3}$)2交于A、B兩點(diǎn),過A、B分別作l的垂線與x軸交于C、D兩點(diǎn),若|AB|=4$\sqrt{3}$,則|CD|=$8\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案