9.已知m>1,且關(guān)于x的不等式m-|x-2|≥1的解集為[0,4].
(1)求m的值;
(2)若a,b均為正實(shí)數(shù),且滿足2a+b+m+4=ab,求a+b的最小值.

分析 (1)根據(jù)m的范圍得到1-m≤x-2≤m-1,結(jié)合不等式的解集求出m的值即可;
(2)求出2a+b+7=ab,得到不等式(a+b)2-6(a+b)-27≥0,解出即可.

解答 解:(1)∵不等式m-|x-2|≥1可化為|x-2|≤m-1,m>1,
∴1-m≤x-2≤m-1,即3-m≤x≤m+1,
∵其解集為[0,4],
∴$\left\{\begin{array}{l}{3-m=0}\\{m+1=4}\end{array}\right.$,
∴m=3;
(2)由(1)得:2a+b+7=ab,
∴a+b+7=a(b-1)≤${(\frac{a+b-1}{2})}^{2}$,
∴(a+b)2-6(a+b)-27≥0
即[(a+b)+3][(a+b)-9]≥0,
∴a+b≤-3(舍)或a+b≥9,
當(dāng)且僅當(dāng)$\left\{\begin{array}{l}{a=b-1}\\{2a+b+7=ab}\end{array}\right.$,
即a=4,b=5時(shí)“=”成立,
∴a+b的最小值是9.

點(diǎn)評(píng) 本題考查了解絕對(duì)值不等式問題,考查轉(zhuǎn)化思想,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某保險(xiǎn)公司用簡單隨機(jī)抽樣方法,對(duì)投保車輛進(jìn)行抽樣,樣本車輛中每輛車的賠付結(jié)果統(tǒng)計(jì)如下:
賠付金額(元)01000200030004000
車輛數(shù)(輛)500130100150120
若每輛車的投保金額均為2800元,估計(jì)賠付金額大于投保金額的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過A(2,4),其頂點(diǎn)的橫坐標(biāo)是$\frac{1}{2}$,它的圖象與x軸交點(diǎn)為B(x1,0)和C(x2,0),且x12+x22=13.
①求函數(shù)的解析式;
②已知點(diǎn)D($\frac{1}{2}$,m),P在函數(shù)的圖象上,求|DP|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.對(duì)任意x∈R不等式x2+2|x-a|≥a2恒成立,則實(shí)數(shù)a的取值范圍是-1≤a≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.為研究懸掛重量x(單位:克)與某物體長度y(單位:厘米)的關(guān)系,進(jìn)行了6次實(shí)驗(yàn),數(shù)據(jù)如表所示,求得線性回歸方程為:$\widehat{y}$=0.183x+6.285.
x51015202530
y7.258.128.959.9010.911.8
由以上數(shù)據(jù)計(jì)算此回歸方程的相關(guān)指數(shù):R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\widehat{{y}_{i}})^{2}}{\sum_{\;}^{\;}({y}_{i}-\overline{y})^{2}}$≈0.999,根據(jù)以上計(jì)算結(jié)果,以下說法正確的是( 。
(1)所選回歸直線模型合適;
(2)所選回歸直線模型擬合精度不高;
(3)懸掛重量影響該物體長度的99.9%;
(4)懸掛重量影響該物體長度差異的99.9%
A.(1)(3)B.(2)(4)C.(1)(4)D.(2)(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.解不等式:x4-3x2-10<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù)),直線l參數(shù)方程為:$\left\{\begin{array}{l}{x=-\sqrt{3}t}\\{y=\frac{2\sqrt{3}}{3}+t}\end{array}\right.$(t為參數(shù))以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,
(1)求直線l和圓C的極坐標(biāo)方程;
(2)設(shè)l與曲線C交于點(diǎn)A和B兩點(diǎn),求劣弧$\widehat{AB}$與弦AB所圍成的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè){an}是正數(shù)組成的數(shù)列,a1=2.若點(diǎn)(an,an+12-2an+1)(n∈N*)在函數(shù)f(x)=$\frac{1}{3}$x3+x2-2的導(dǎo)函數(shù)y=f'(x)圖象上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{2}{{{a_{n+1}}•{a_n}}}$,是否存在最小的正數(shù)M,使得對(duì)任意n∈N*都有b1+b2+…+bn<M成立?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若sinα,sin2α,sin4α成等比數(shù)列,則cosα的值為( 。
A.1B.0C.-$\frac{1}{2}$D.-$\frac{1}{2}$或1

查看答案和解析>>

同步練習(xí)冊(cè)答案