存在實數(shù)a使得方程cosx=a在[0,2π]上有兩個不相等的實數(shù)根x1,x2,則sin
x1+x2
3
=(  )
A、
1
2
B、
3
2
C、-
1
2
D、-
3
2
考點:余弦函數(shù)的對稱性,函數(shù)的零點與方程根的關(guān)系
專題:三角函數(shù)的求值
分析:畫出y1=cosx,y2=a在[0,2π]上的圖象,求出兩個交點的對稱軸的橫坐標,即可求出sin
x1+x2
3
的值
解答: 解:畫出y1=cosx,y2=a在[0,2π]上的圖象,
得兩交點必關(guān)于直線x=π對稱,
x1+x2
2
=π,得
x1+x2
3
=
3

∴sin
x1+x2
3
=sin
3
=
3
2

故選:B.
點評:本題是中檔題,考查數(shù)形結(jié)合,方程的根就是函數(shù)圖象交點的橫坐標,考查轉(zhuǎn)化思想,計算能力,?碱}型.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知在等差數(shù)列{an}中,a3+a9+a15=15,則數(shù)列{an}的前17項之和S17=( 。
A、45B、85C、95D、105

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正四棱柱ABCD-A′B′C′D′中,AB=1,A′A=2,則 A′C與BC所成角的余弦值為( 。
A、
5
5
B、
5
6
C、
6
6
D、
30
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
4
-
y2
12
=1的左右焦點分別為F1,F(xiàn)2,P為右支上一動點,點Q(1,4),則|PQ|+|PF1|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
y2
9
+x2
=1,直線l:9x+y-5=0與橢圓C相交于A、B兩點,點P為弦AB的中點,則點P的坐標為(  )
A、(
1
2
1
2
B、(-
1
2
,
19
2
C、(1,-4)
D、(-1,14)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若不等式組
x≤1
y≤3
2x-y+λ-1≥0
表示的平面區(qū)域經(jīng)過所有四個象限,則實數(shù)λ的取值范圍是( 。
A、(-∞,4)??
B、[1,2]
C、(1,4)
D、(1,+∞)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

球O的一個截面圓的圓心為M,圓M的半徑為
3
,OM的長度為球O的半徑的一半,則球O的表面積為( 。
A、4π
B、
32
3
π
C、12π
D、16π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知下列直線的傾斜角,求直線的斜率:
(1)a=30°
(2)a=45°
(3)a=120°
(4)a=135°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)不等式sinx≥
3
2
的解集是
 
,
(2)不等式
2
+2cos2x≥0的解集是
 
,
(3)不等式1+tan
x
3
≥0的解集是
 
,
(4)不等式tanx≥
3
的解集是
 

查看答案和解析>>

同步練習冊答案