1.不等式(x+1)3(x-1)(x+2)<0的解集為(-∞,-2)∪(-1,1).

分析 將不等式等價(jià)轉(zhuǎn)化為(x+1)(x-1)(x+2)<0,由穿根法得到不等式的解集.

解答 解:原不等式等價(jià)于(x+1)(x-1)(x+2)<0,由穿根法得到不等式的解集為:(-∞,-2)∪(-1,1);

故答案為:(-∞,-2)∪(-1,1);

點(diǎn)評(píng) 本題考查了高次不等式的解法,利用穿根法直觀易解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.$\frac{1}{2}sin{15°}-\frac{{\sqrt{3}}}{2}cos{15°}$的值是( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{2}}}{2}$D.-$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.求下列函數(shù)的導(dǎo)數(shù):
(1)$y=\frac{{{x^3}-1}}{sinx}$;         
(2)y=2e1-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.正方體ABCD-A1B1C1D1中,P為平面BB1C1C內(nèi)一動(dòng)點(diǎn),且P到BC的距離與P到C1D1的距離之比為2,則點(diǎn)P的軌跡為(  )
A.B.雙曲線C.拋物線D.橢圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.tan($\frac{π}{6}$-α)=$\frac{\sqrt{3}}{3}$,則tan($\frac{5π}{6}$+α)=( 。
A.-$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{3}$C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.設(shè)a>0,b>0,若$\sqrt{2}$是2a與2b的一個(gè)等比中項(xiàng),則ab的最大值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在平面直角坐標(biāo)系中,曲線C1的參數(shù)方程為:$\left\{{\begin{array}{l}{x=4cosθ}\\{y=3sinθ}\end{array}}$(θ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為$ρsin({θ+\frac{π}{4}})=\frac{{5\sqrt{2}}}{2}$.
(1)求曲線C2的直角坐標(biāo)方程;
(2)已知點(diǎn)M曲線C1上任意一點(diǎn),求點(diǎn)M到曲線C2的距離d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且acosB-bcosA=$\frac{1}{2}$c,當(dāng)tan(A-B)取最大值時(shí),則角C的值為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若a∈R,則下列式子恒成立的是( 。
A.${a^{\frac{2n}{2m}}}$=${a^{\frac{n}{m}}}$B.$\root{4}{a^2}$=$\sqrt{|a|}$C.(a${\;}^{\frac{n}{m}}}$)2=a${\;}^{{{(\frac{n}{m})}^2}}}$D.$\root{5}{a^2}$=${a^{\frac{5}{2}}}$

查看答案和解析>>

同步練習(xí)冊(cè)答案